Effect of Phonons and Impurities on the Quantum Transport in XXZ
Spin-Chains
- URL: http://arxiv.org/abs/2206.11156v2
- Date: Tue, 5 Jul 2022 18:03:03 GMT
- Title: Effect of Phonons and Impurities on the Quantum Transport in XXZ
Spin-Chains
- Authors: Amartya Bose
- Abstract summary: We evaluate the transport process by incorporating a bath of phonons and impurities in order to understand the role played by each of the factors.
We show that while the transport in presence of impurities eventually becomes diffusive, the exact details are dependent on the specifics of the interactions and amount of impurities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical and analytic results have been used to characterize quantum
transport in spin chains, showing the existence of both ballistic and diffusive
motion. Experiments have shown that heat transfer is surprisingly always
diffusive. The scattering from phonons and impurities have been postulated to
be the two factors critical in causing the diffusive transport. In this work,
we evaluate the transport process by incorporating a bath of phonons and
impurities in order to understand the role played by each of the factors. While
methods like time-dependent density matrix renormalization group (tDMRG) can be
used to simulate isolated spin chains, the coupling with phonons make
simulations significantly more challenging. The recently developed multisite
tensor network path integral (MS-TNPI) method builds a framework for simulating
the dynamics in extended open quantum systems by combining ideas from tDMRG and
Feynman-Vernon influence functional. This MS-TNPI is used to characterize
dynamics in open, extended quantum systems. Simulations are done with the
commonly used sub-Ohmic, Ohmic and super-Ohmic spectral densities describing
the phononic bath. We show that while the transport in presence of impurities
eventually becomes diffusive, the exact details are dependent on the specifics
of the interactions and amount of impurities. In contrast, the presence of a
bath makes the transport diffusive irrespective of the parameters
characterizing the bath.
Related papers
- Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Universal stability of coherently diffusive 1D systems with respect to decoherence [0.0]
We show that transport is exceptionally stable against decoherent noise when coherent diffusion is present.
Our results might shed new light on the functionality of many biological systems, which often operate at the border between the ballistic and localized regimes.
arXiv Detail & Related papers (2023-07-11T15:49:51Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Distinct universality classes of diffusive transport from full counting
statistics [0.4014524824655105]
We study the full counting statistics of spin transport in various integrable and non-integrable anisotropic one-dimensional spin models.
We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian universality class.
Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
arXiv Detail & Related papers (2022-03-17T18:00:01Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.