Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices
- URL: http://arxiv.org/abs/2403.11967v2
- Date: Tue, 9 Jul 2024 02:58:58 GMT
- Title: Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices
- Authors: Botao Du, Ramya Suresh, Santiago López, Jeremy Cadiente, Ruichao Ma,
- Abstract summary: Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect. Analogously, they can be powerful tools for probing synthetic quantum matter in quantum simulators. Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices. Our method utilizes controlled tunneling in a double-well potential to map current to on-site density, revealing site-resolved current and current statistics. We prepare a strongly interacting Bose-Hubbard lattice at different lattice fillings, and observe the change in current statistics as the many-body states transition from superfluid to Mott insulator. Furthermore, we explore non-equilibrium current dynamics by coupling the lattice to engineered driven-dissipative baths that serve as tunable particle source and drain. We observe steady-state current in discrete conduction channels and interaction-assisted transport. These results establish a versatile platform to investigate microscopic quantum transport in superconducting circuits.
Related papers
- Emergence of steady quantum transport in a superconducting processor [19.218699138132248]
Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management.
We demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths.
Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter.
arXiv Detail & Related papers (2024-11-11T08:43:47Z) - Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - Electron Transport Through a 1D Chain of Dopant-Based Quantum Dots [0.0]
The Fermi-Hubbard model is the prototypical model used to study quantum many-body systems.
Recent research has shown that the extended Fermi-Hubbard model is more accurate.
This research will lead to a better understanding of electron behavior in silicon-doped semiconductors.
arXiv Detail & Related papers (2024-02-06T16:41:59Z) - Vortex-enabled Andreev processes in quantum Hall-superconductor hybrids [0.0]
We investigate transport through a proximitized integer quantum Hall edge.
By examining the downstream conductance, we identify regimes in which sub-gap vortex levels mediate Andreev processes.
We show that at finite temperature, and in the limit of a large number of vortices, the downstream conductance can average to zero, indicating that the superconductor effectively behaves like a normal contact.
arXiv Detail & Related papers (2022-07-21T18:00:15Z) - Effect of Phonons and Impurities on the Quantum Transport in XXZ
Spin-Chains [0.0]
We evaluate the transport process by incorporating a bath of phonons and impurities in order to understand the role played by each of the factors.
We show that while the transport in presence of impurities eventually becomes diffusive, the exact details are dependent on the specifics of the interactions and amount of impurities.
arXiv Detail & Related papers (2022-06-22T15:02:34Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.