Entropy-driven Sampling and Training Scheme for Conditional Diffusion
Generation
- URL: http://arxiv.org/abs/2206.11474v3
- Date: Mon, 27 Jun 2022 03:29:51 GMT
- Title: Entropy-driven Sampling and Training Scheme for Conditional Diffusion
Generation
- Authors: Shengming Li, Guangcong Zheng, Hui Wang, Taiping Yao, Yang Chen,
Shoudong Ding, Xi Li
- Abstract summary: Denoising Diffusion Probabilistic Model (DDPM) is able to make flexible conditional image generation from prior noise to real data.
However, due to the ability of classifier to easily discriminate an incompletely generated image only with high-level structure, the gradient tends to vanish early.
We propose two simple but effective approaches from two perspectives to address this problem.
- Score: 16.13197951857033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising Diffusion Probabilistic Model (DDPM) is able to make flexible
conditional image generation from prior noise to real data, by introducing an
independent noise-aware classifier to provide conditional gradient guidance at
each time step of denoising process. However, due to the ability of classifier
to easily discriminate an incompletely generated image only with high-level
structure, the gradient, which is a kind of class information guidance, tends
to vanish early, leading to the collapse from conditional generation process
into the unconditional process. To address this problem, we propose two simple
but effective approaches from two perspectives. For sampling procedure, we
introduce the entropy of predicted distribution as the measure of guidance
vanishing level and propose an entropy-aware scaling method to adaptively
recover the conditional semantic guidance. For training stage, we propose the
entropy-aware optimization objectives to alleviate the overconfident prediction
for noisy data.On ImageNet1000 256x256, with our proposed sampling scheme and
trained classifier, the pretrained conditional and unconditional DDPM model can
achieve 10.89% (4.59 to 4.09) and 43.5% (12 to 6.78) FID improvement
respectively.
Related papers
- A First-order Generative Bilevel Optimization Framework for Diffusion Models [57.40597004445473]
Diffusion models iteratively denoise data samples to synthesize high-quality outputs.
Traditional bilevel methods fail due to infinite-dimensional probability space and prohibitive sampling costs.
We formalize this challenge as a generative bilevel optimization problem.
Our first-order bilevel framework overcomes the incompatibility of conventional bilevel methods with diffusion processes.
arXiv Detail & Related papers (2025-02-12T21:44:06Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
We introduce a new class of generative diffusion models that achieve a time-homogeneous structure for both the noising and denoising processes.
A key feature of the model is its adaptability to the target data, enabling a variety of downstream tasks using a pre-trained unconditional generative model.
arXiv Detail & Related papers (2025-01-31T18:23:27Z) - Optimized Gradient Clipping for Noisy Label Learning [26.463965846251938]
We propose a simple yet effective approach called Optimized Gradient Clipping (OGC)
OGC dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping.
Our experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of OGC.
arXiv Detail & Related papers (2024-12-12T05:08:05Z) - Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training [10.229653770070202]
Training generative models with differential privacy (DP) typically involves injecting noise into gradient updates or adapting the discriminator's training procedure.
We consider the slicing privacy mechanism that injects noise into random low-dimensional projections of the private data.
We present a kernel-based estimator for this divergence, circumventing the need for adversarial training.
arXiv Detail & Related papers (2024-10-25T19:32:58Z) - FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
We introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization.
Our method achieves 10 times faster than the SOTA approach.
arXiv Detail & Related papers (2024-07-28T10:07:55Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - PriorGrad: Improving Conditional Denoising Diffusion Models with
Data-Driven Adaptive Prior [103.00403682863427]
We propose PriorGrad to improve the efficiency of the conditional diffusion model.
We show that PriorGrad achieves a faster convergence leading to data and parameter efficiency and improved quality.
arXiv Detail & Related papers (2021-06-11T14:04:03Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.