Optimized Gradient Clipping for Noisy Label Learning
- URL: http://arxiv.org/abs/2412.08941v4
- Date: Sun, 22 Dec 2024 13:47:27 GMT
- Title: Optimized Gradient Clipping for Noisy Label Learning
- Authors: Xichen Ye, Yifan Wu, Weizhong Zhang, Xiaoqiang Li, Yifan Chen, Cheng Jin,
- Abstract summary: We propose a simple yet effective approach called Optimized Gradient Clipping (OGC)
OGC dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping.
Our experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of OGC.
- Score: 26.463965846251938
- License:
- Abstract: Previous research has shown that constraining the gradient of loss function with respect to model-predicted probabilities can enhance the model robustness against noisy labels. These methods typically specify a fixed optimal threshold for gradient clipping through validation data to obtain the desired robustness against noise. However, this common practice overlooks the dynamic distribution of gradients from both clean and noisy-labeled samples at different stages of training, significantly limiting the model capability to adapt to the variable nature of gradients throughout the training process. To address this issue, we propose a simple yet effective approach called Optimized Gradient Clipping (OGC), which dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping, estimated by modeling the distributions of clean and noisy samples. This approach allows us to modify the clipping threshold at each training step, effectively controlling the influence of noise gradients. Additionally, we provide statistical analysis to certify the noise-tolerance ability of OGC. Our extensive experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of our approach.
Related papers
- Rethinking the Principle of Gradient Smooth Methods in Model Explanation [2.6819730646697972]
Gradient Smoothing is an efficient approach to reducing noise in gradient-based model explanation method.
We propose an adaptive gradient smoothing method, AdaptGrad, based on these insights.
arXiv Detail & Related papers (2024-10-10T08:24:27Z) - Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation [16.283722126438125]
Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples.
Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set.
This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods.
arXiv Detail & Related papers (2023-05-31T01:46:14Z) - Securing Distributed SGD against Gradient Leakage Threats [13.979995939926154]
This paper presents a holistic approach to gradient leakage resilient distributed gradient Descent (SGD)
We analyze two types of strategies for privacy-enhanced federated learning: (i) gradient pruning with random selection or low-rank filtering and (ii) gradient perturbation with additive random noise or differential privacy noise.
We present a gradient leakage resilient approach to securing distributed SGD in federated learning, with differential privacy controlled noise as the tool.
arXiv Detail & Related papers (2023-05-10T21:39:27Z) - Doubly Stochastic Models: Learning with Unbiased Label Noises and
Inference Stability [85.1044381834036]
We investigate the implicit regularization effects of label noises under mini-batch sampling settings of gradient descent.
We find such implicit regularizer would favor some convergence points that could stabilize model outputs against perturbation of parameters.
Our work doesn't assume SGD as an Ornstein-Uhlenbeck like process and achieve a more general result with convergence of approximation proved.
arXiv Detail & Related papers (2023-04-01T14:09:07Z) - Per-Example Gradient Regularization Improves Learning Signals from Noisy
Data [25.646054298195434]
Empirical evidence suggests that gradient regularization technique can significantly enhance the robustness of deep learning models against noisy perturbations.
We present a theoretical analysis that demonstrates its effectiveness in improving both test error and robustness against noise perturbations.
Our analysis reveals that PEGR penalizes the variance of pattern learning, thus effectively suppressing the memorization of noises from the training data.
arXiv Detail & Related papers (2023-03-31T10:08:23Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
We explore the use of exact per-sample Hessian-vector products and gradients to construct self-tuning quadratics.
We prove that our model-based procedure converges in noisy gradient setting.
This is an interesting step for constructing self-tuning quadratics.
arXiv Detail & Related papers (2020-11-09T22:07:30Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.