Invariant Causal Mechanisms through Distribution Matching
- URL: http://arxiv.org/abs/2206.11646v1
- Date: Thu, 23 Jun 2022 12:06:54 GMT
- Title: Invariant Causal Mechanisms through Distribution Matching
- Authors: Mathieu Chevalley, Charlotte Bunne, Andreas Krause, Stefan Bauer
- Abstract summary: In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
- Score: 86.07327840293894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning representations that capture the underlying data generating process
is a key problem for data efficient and robust use of neural networks. One key
property for robustness which the learned representation should capture and
which recently received a lot of attention is described by the notion of
invariance. In this work we provide a causal perspective and new algorithm for
learning invariant representations. Empirically we show that this algorithm
works well on a diverse set of tasks and in particular we observe
state-of-the-art performance on domain generalization, where we are able to
significantly boost the score of existing models.
Related papers
- Robust Domain Generalisation with Causal Invariant Bayesian Neural Networks [9.999199798941424]
We propose a Bayesian neural architecture that disentangles the learning of the the data distribution from the inference process mechanisms.
We show theoretically and experimentally that our model approximates reasoning under causal interventions.
arXiv Detail & Related papers (2024-10-08T20:38:05Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
We study the problem of learning a representation of the state that faithfully captures its dynamics.
This is instrumental to learning the transfer operator or the generator of the system.
We show that the search for a good representation can be cast as an optimization problem over neural networks.
arXiv Detail & Related papers (2023-07-19T11:32:24Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Bayesian Attention Belief Networks [59.183311769616466]
Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks.
This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights.
We show that our method outperforms deterministic attention and state-of-the-art attention in accuracy, uncertainty estimation, generalization across domains, and adversarial attacks.
arXiv Detail & Related papers (2021-06-09T17:46:22Z) - Model-agnostic interpretation by visualization of feature perturbations [0.0]
We propose a model-agnostic interpretation approach that uses visualization of feature perturbations induced by the particle swarm optimization algorithm.
We validate our approach both qualitatively and quantitatively on publicly available datasets.
arXiv Detail & Related papers (2021-01-26T00:53:29Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.