Robust Domain Generalisation with Causal Invariant Bayesian Neural Networks
- URL: http://arxiv.org/abs/2410.06349v1
- Date: Tue, 8 Oct 2024 20:38:05 GMT
- Title: Robust Domain Generalisation with Causal Invariant Bayesian Neural Networks
- Authors: Gaƫl Gendron, Michael Witbrock, Gillian Dobbie,
- Abstract summary: We propose a Bayesian neural architecture that disentangles the learning of the the data distribution from the inference process mechanisms.
We show theoretically and experimentally that our model approximates reasoning under causal interventions.
- Score: 9.999199798941424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks can obtain impressive performance on various tasks under the assumption that their training domain is identical to their target domain. Performance can drop dramatically when this assumption does not hold. One explanation for this discrepancy is the presence of spurious domain-specific correlations in the training data that the network exploits. Causal mechanisms, in the other hand, can be made invariant under distribution changes as they allow disentangling the factors of distribution underlying the data generation. Yet, learning causal mechanisms to improve out-of-distribution generalisation remains an under-explored area. We propose a Bayesian neural architecture that disentangles the learning of the the data distribution from the inference process mechanisms. We show theoretically and experimentally that our model approximates reasoning under causal interventions. We demonstrate the performance of our method, outperforming point estimate-counterparts, on out-of-distribution image recognition tasks where the data distribution acts as strong adversarial confounders.
Related papers
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Gated Domain Units for Multi-source Domain Generalization [14.643490853965385]
Distribution shift (DS) occurs when a dataset at test time differs from the dataset at training time.
We introduce a modular neural network layer consisting of Gated Domain Units (GDUs) that learn a representation for each latent elementary distribution.
During inference, a weighted ensemble of learning machines can be created by comparing new observations with the representations of each elementary distribution.
arXiv Detail & Related papers (2022-06-24T18:12:38Z) - Invariant Causal Mechanisms through Distribution Matching [86.07327840293894]
In this work we provide a causal perspective and a new algorithm for learning invariant representations.
Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization.
arXiv Detail & Related papers (2022-06-23T12:06:54Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms [34.99779761100095]
Domain generalization aims to learn knowledge invariant across different distributions.
We consider the causal invariance of the average causal effect of the features to the labels.
arXiv Detail & Related papers (2021-06-02T04:01:22Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.