Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need
- URL: http://arxiv.org/abs/2206.11804v2
- Date: Mon, 27 Jun 2022 07:42:42 GMT
- Title: Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need
- Authors: An Wang, Mobarakol Islam, Mengya Xu and Hongliang Ren
- Abstract summary: Data scarcity and imbalance have heavily affected the model accuracy and limited the design and deployment of deep learning-based surgical applications.
We propose a one-to-many data generation solution that gets rid of the complicated and expensive process of data collection and annotation from robotic surgery.
Our empirical analysis suggests that without the high cost of data collection and annotation, we can achieve decent surgical instrument segmentation performance.
- Score: 18.830738606514736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data diversity and volume are crucial to the success of training deep
learning models, while in the medical imaging field, the difficulty and cost of
data collection and annotation are especially huge. Specifically in robotic
surgery, data scarcity and imbalance have heavily affected the model accuracy
and limited the design and deployment of deep learning-based surgical
applications such as surgical instrument segmentation. Considering this, in
this paper, we rethink the surgical instrument segmentation task and propose a
one-to-many data generation solution that gets rid of the complicated and
expensive process of data collection and annotation from robotic surgery. In
our method, we only utilize a single surgical background tissue image and a few
open-source instrument images as the seed images and apply multiple
augmentations and blending techniques to synthesize amounts of image
variations. In addition, we also introduce the chained augmentation mixing
during training to further enhance the data diversities. The proposed approach
is evaluated on the real datasets of the EndoVis-2018 and EndoVis-2017 surgical
scene segmentation. Our empirical analysis suggests that without the high cost
of data collection and annotation, we can achieve decent surgical instrument
segmentation performance. Moreover, we also observe that our method can deal
with novel instrument prediction in the deployment domain. We hope our
inspiring results will encourage researchers to emphasize data-centric methods
to overcome demanding deep learning limitations besides data shortage, such as
class imbalance, domain adaptation, and incremental learning.
Related papers
- SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models [1.6189876649941652]
We introduce emphSurgicaL-CD, a consistency-distilled diffusion method to generate realistic surgical images.
Our results demonstrate that our method outperforms GANs and diffusion-based approaches.
arXiv Detail & Related papers (2024-08-19T09:19:25Z) - Jumpstarting Surgical Computer Vision [2.7396997668655163]
We employ self-supervised learning to flexibly leverage diverse surgical datasets.
We study phase recognition and critical view of safety in laparoscopic cholecystectomy and laparoscopic hysterectomy.
The composition of pre-training datasets can severely affect the effectiveness of SSL methods for various downstream tasks.
arXiv Detail & Related papers (2023-12-10T18:54:16Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
arXiv Detail & Related papers (2023-09-02T14:52:58Z) - Generalizing Surgical Instruments Segmentation to Unseen Domains with
One-to-Many Synthesis [18.830738606514736]
Deep learning methods are frequently hindered from deploying to real-world surgical applications.
Data collection, annotation, and domain shift in-between sites and patients are the most common obstacles.
We mitigate data-related issues by efficiently leveraging minimal source images to generate synthetic surgical instrument segmentation datasets.
arXiv Detail & Related papers (2023-06-28T15:06:44Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery [10.562627972607892]
We show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem.
We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images.
arXiv Detail & Related papers (2020-07-17T16:33:33Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.