Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries
- URL: http://arxiv.org/abs/2309.00957v1
- Date: Sat, 2 Sep 2023 14:52:58 GMT
- Title: Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries
- Authors: Jiaqi Liu, Yonghao Long, Kai Chen, Cheuk Hei Leung, Zerui Wang, Qi Dou
- Abstract summary: We propose a novel visual-kinematics graph learning framework to accurately segment the instrument tip given various surgical procedures.
Specifically, a graph learning framework is proposed to encode relational features of instrument parts from both image and kinematics.
A cross-modal contrastive loss is designed to incorporate robust geometric prior from kinematics to image for tip segmentation.
- Score: 29.201385352740555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of surgical instrument tip is an important task for
enabling downstream applications in robotic surgery, such as surgical skill
assessment, tool-tissue interaction and deformation modeling, as well as
surgical autonomy. However, this task is very challenging due to the small
sizes of surgical instrument tips, and significant variance of surgical scenes
across different procedures. Although much effort has been made on visual-based
methods, existing segmentation models still suffer from low robustness thus not
usable in practice. Fortunately, kinematics data from the robotic system can
provide reliable prior for instrument location, which is consistent regardless
of different surgery types. To make use of such multi-modal information, we
propose a novel visual-kinematics graph learning framework to accurately
segment the instrument tip given various surgical procedures. Specifically, a
graph learning framework is proposed to encode relational features of
instrument parts from both image and kinematics. Next, a cross-modal
contrastive loss is designed to incorporate robust geometric prior from
kinematics to image for tip segmentation. We have conducted experiments on a
private paired visual-kinematics dataset including multiple procedures, i.e.,
prostatectomy, total mesorectal excision, fundoplication and distal gastrectomy
on cadaver, and distal gastrectomy on porcine. The leave-one-procedure-out
cross validation demonstrated that our proposed multi-modal segmentation method
significantly outperformed current image-based state-of-the-art approaches,
exceeding averagely 11.2% on Dice.
Related papers
- VISAGE: Video Synthesis using Action Graphs for Surgery [34.21344214645662]
We introduce the novel task of future video generation in laparoscopic surgery.
Our proposed method, VISAGE, leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures.
Results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures.
arXiv Detail & Related papers (2024-10-23T10:28:17Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Hierarchical Semi-Supervised Learning Framework for Surgical Gesture
Segmentation and Recognition Based on Multi-Modality Data [2.8770761243361593]
We develop a hierarchical semi-supervised learning framework for surgical gesture segmentation using multi-modality data.
A Transformer-based network with a pre-trained ResNet-18' backbone is used to extract visual features from the surgical operation videos.
The proposed approach has been evaluated using data from the publicly available JIGS database, including Suturing, Needle Passing, and Knot Tying tasks.
arXiv Detail & Related papers (2023-07-31T21:17:59Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
We propose a vision transformer-based approach to learn temporal features directly from sequence-level patches.
We extensively evaluate our approach on two cataract surgery video datasets, Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods.
arXiv Detail & Related papers (2023-07-20T17:57:04Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
We present a multi-camera capture setup consisting of static and head-mounted cameras.
Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.
Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need [18.830738606514736]
Data scarcity and imbalance have heavily affected the model accuracy and limited the design and deployment of deep learning-based surgical applications.
We propose a one-to-many data generation solution that gets rid of the complicated and expensive process of data collection and annotation from robotic surgery.
Our empirical analysis suggests that without the high cost of data collection and annotation, we can achieve decent surgical instrument segmentation performance.
arXiv Detail & Related papers (2022-06-23T16:22:56Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z) - Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery [10.562627972607892]
We show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem.
We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images.
arXiv Detail & Related papers (2020-07-17T16:33:33Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.