Context-based Virtual Adversarial Training for Text Classification with
Noisy Labels
- URL: http://arxiv.org/abs/2206.11851v1
- Date: Sun, 29 May 2022 14:19:49 GMT
- Title: Context-based Virtual Adversarial Training for Text Classification with
Noisy Labels
- Authors: Do-Myoung Lee, Yeachan Kim, Chang-gyun Seo
- Abstract summary: We propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels.
Unlike the previous works, the proposed method performs the adversarial training at the context level rather than the inputs.
We conduct extensive experiments on four text classification datasets with two types of label noises.
- Score: 1.9508698179748525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have a high capacity to completely memorize noisy
labels given sufficient training time, and its memorization, unfortunately,
leads to performance degradation. Recently, virtual adversarial training (VAT)
attracts attention as it could further improve the generalization of DNNs in
semi-supervised learning. The driving force behind VAT is to prevent the models
from overfitting data points by enforcing consistency between the inputs and
the perturbed inputs. This strategy could be helpful in learning from noisy
labels if it prevents neural models from learning noisy samples while
encouraging the models to generalize clean samples. In this paper, we propose
context-based virtual adversarial training (ConVAT) to prevent a text
classifier from overfitting to noisy labels. Unlike the previous works, the
proposed method performs the adversarial training at the context level rather
than the inputs. It makes the classifier not only learn its label but also its
contextual neighbors, which alleviates the learning from noisy labels by
preserving contextual semantics on each data point. We conduct extensive
experiments on four text classification datasets with two types of label
noises. Comprehensive experimental results clearly show that the proposed
method works quite well even with extremely noisy settings.
Related papers
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Rethinking Noisy Label Learning in Real-world Annotation Scenarios from
the Noise-type Perspective [38.24239397999152]
We propose a novel sample selection-based approach for noisy label learning, called Proto-semi.
Proto-semi divides all samples into the confident and unconfident datasets via warm-up.
By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics.
Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels.
arXiv Detail & Related papers (2023-07-28T10:57:38Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Dynamic Adaptive Threshold based Learning for Noisy Annotations Robust
Facial Expression Recognition [3.823356975862006]
We propose a dynamic FER learning framework (DNFER) to handle noisy annotations.
Specifically, DNFER is based on supervised training using selected clean samples and unsupervised consistent training using all the samples.
We demonstrate the robustness of DNFER on both synthetic as well as on real noisy annotated FER datasets like RAFDB, FERPlus, SFEW and AffectNet.
arXiv Detail & Related papers (2022-08-22T12:02:41Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods.
We propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND)
arXiv Detail & Related papers (2022-06-27T02:45:09Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Multi-Objective Interpolation Training for Robustness to Label Noise [17.264550056296915]
We show that standard supervised contrastive learning degrades in the presence of label noise.
We propose a novel label noise detection method that exploits the robust feature representations learned via contrastive learning.
Experiments on synthetic and real-world noise benchmarks demonstrate that MOIT/MOIT+ achieves state-of-the-art results.
arXiv Detail & Related papers (2020-12-08T15:01:54Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.