Offline RL for Natural Language Generation with Implicit Language Q
Learning
- URL: http://arxiv.org/abs/2206.11871v2
- Date: Mon, 1 May 2023 04:42:27 GMT
- Title: Offline RL for Natural Language Generation with Implicit Language Q
Learning
- Authors: Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, Sergey Levine
- Abstract summary: Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
- Score: 87.76695816348027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models distill broad knowledge from text corpora. However,
they can be inconsistent when it comes to completing user specified tasks. This
issue can be addressed by finetuning such models via supervised learning on
curated datasets, or via reinforcement learning. In this work, we propose a
novel offline RL method, implicit language Q-learning (ILQL), designed for use
on language models, that combines both the flexible utility maximization
framework of RL algorithms with the ability of supervised learning to leverage
previously collected data, as well as its simplicity and stability. Our method
employs a combination of value conservatism alongside an implicit dataset
support constraint in learning value functions, which are then used to guide
language model generations towards maximizing user-specified utility functions.
In addition to empirically validating ILQL, we present a detailed empirical
analysis of situations where offline RL can be useful in natural language
generation settings, demonstrating how it can be a more effective utility
optimizer than prior approaches for end-to-end dialogue, and how it can
effectively optimize high variance reward functions based on subjective
judgement, such as whether to label a comment as toxic or not.
Related papers
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
Large language models have been flourishing in the natural language processing (NLP) domain.
Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns.
Existing works only fine-tune a sole LLM on given text data without introducing that important information to it.
arXiv Detail & Related papers (2024-06-27T01:37:57Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
This paper introduces the Contextual Language model for Accurate Imputation Method (CLAIM)
Unlike traditional imputation methods, CLAIM utilizes contextually relevant natural language descriptors to fill missing values.
Our evaluations across diverse datasets and missingness patterns reveal CLAIM's superior performance over existing imputation techniques.
arXiv Detail & Related papers (2024-05-28T00:08:29Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Is Reinforcement Learning (Not) for Natural Language Processing?:
Benchmarks, Baselines, and Building Blocks for Natural Language Policy
Optimization [73.74371798168642]
We introduce an open-source modular library, RL4LMs, for optimizing language generators with reinforcement learning.
Next, we present the GRUE benchmark, a set of 6 language generation tasks which are supervised not by target strings, but by reward functions.
Finally, we introduce an easy-to-use, performant RL algorithm, NLPO, that learns to effectively reduce the action space in language generation.
arXiv Detail & Related papers (2022-10-03T21:38:29Z) - Learning Natural Language Generation from Scratch [25.984828046001013]
This paper introduces TRUncated ReinForcement Learning for Language (TrufLL)
It is an original ap-proach to train conditional language models from scratch by only using reinforcement learning (RL)
arXiv Detail & Related papers (2021-09-20T08:46:51Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.