CELA: Cost-Efficient Language Model Alignment for CTR Prediction
- URL: http://arxiv.org/abs/2405.10596v2
- Date: Tue, 18 Jun 2024 03:43:12 GMT
- Title: CELA: Cost-Efficient Language Model Alignment for CTR Prediction
- Authors: Xingmei Wang, Weiwen Liu, Xiaolong Chen, Qi Liu, Xu Huang, Defu Lian, Xiangyang Li, Yasheng Wang, Zhenhua Dong, Ruiming Tang,
- Abstract summary: Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
- Score: 71.85120354973073
- License:
- Abstract: Click-Through Rate (CTR) prediction holds a paramount position in recommender systems. The prevailing ID-based paradigm underperforms in cold-start scenarios due to the skewed distribution of feature frequency. Additionally, the utilization of a single modality fails to exploit the knowledge contained within textual features. Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs). They design hard prompts to structure raw features into text for each interaction and then apply PLMs for text processing. With external knowledge and reasoning capabilities, PLMs extract valuable information even in cases of sparse interactions. Nevertheless, compared to ID-based models, pure text modeling degrades the efficacy of collaborative filtering, as well as feature scalability and efficiency during both training and inference. To address these issues, we propose \textbf{C}ost-\textbf{E}fficient \textbf{L}anguage Model \textbf{A}lignment (\textbf{CELA}) for CTR prediction. CELA incorporates textual features and language models while preserving the collaborative filtering capabilities of ID-based models. This model-agnostic framework can be equipped with plug-and-play textual features, with item-level alignment enhancing the utilization of external information while maintaining training and inference efficiency. Through extensive offline experiments, CELA demonstrates superior performance compared to state-of-the-art methods. Furthermore, an online A/B test conducted on an industrial App recommender system showcases its practical effectiveness, solidifying the potential for real-world applications of CELA.
Related papers
- Feature Interaction Fusion Self-Distillation Network For CTR Prediction [14.12775753361368]
Click-Through Rate (CTR) prediction plays a vital role in recommender systems, online advertising, and search engines.
We propose FSDNet, a CTR prediction framework incorporating a plug-and-play fusion self-distillation module.
arXiv Detail & Related papers (2024-11-12T03:05:03Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Making Text Embedders Few-Shot Learners [33.50993377494602]
We introduce a novel model bge-en-icl, which employs few-shot examples to produce high-quality text embeddings.
Our approach integrates task-related examples directly into the query side, resulting in significant improvements across various tasks.
Experimental results on the MTEB and AIR-Bench benchmarks demonstrate that our approach sets new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-09-24T03:30:19Z) - EasyRec: Simple yet Effective Language Models for Recommendation [6.311058599430178]
EasyRec is an effective and easy-to-use approach that seamlessly integrates text-based semantic understanding with collaborative signals.
EasyRec employs a text-behavior alignment framework, which combines contrastive learning with collaborative language model tuning.
The study highlights the potential of seamlessly integrating EasyRec as a plug-and-play component into text-enhanced collaborative filtering frameworks.
arXiv Detail & Related papers (2024-08-16T16:09:59Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model
with Non-textual Features for CTR Prediction [12.850529317775198]
We propose a novel framework BERT4CTR, with the Uni-Attention mechanism that can benefit from the interactions between non-textual and textual features.
BERT4CTR can outperform significantly the state-of-the-art frameworks to handle multi-modal inputs and be applicable to Click-Through-Rate (CTR) prediction.
arXiv Detail & Related papers (2023-08-17T08:25:54Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.