論文の概要: BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
- arxiv url: http://arxiv.org/abs/2206.12038v1
- Date: Fri, 24 Jun 2022 02:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 02:59:48.392286
- Title: BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
- Title(参考訳): BYOL-S:ブートストラップによる自己教師型音声表現の学習
- Authors: Gasser Elbanna, Neil Scheidwasser-Clow, Mikolaj Kegler, Pierre
Beckmann, Karl El Hajal, Milos Cernak
- Abstract要約: この研究は、ブートストラップによる自己教師型学習に基づく既存の手法を拡張し、様々なエンコーダアーキテクチャを提案し、異なる事前学習データセットを使用することの効果を探る。
本稿では,手工芸とデータ駆動型学習音声機能を組み合わせたハイブリッド音声表現を提案する。
提案したすべての表現は、聴覚シーン分類とタイムスタンプ検出タスクのためのHEAR NeurIPS 2021チャレンジで評価された。
- 参考スコア(独自算出の注目度): 19.071463356974387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods for extracting audio and speech features have been studied since
pioneering work on spectrum analysis decades ago. Recent efforts are guided by
the ambition to develop general-purpose audio representations. For example,
deep neural networks can extract optimal embeddings if they are trained on
large audio datasets. This work extends existing methods based on
self-supervised learning by bootstrapping, proposes various encoder
architectures, and explores the effects of using different pre-training
datasets. Lastly, we present a novel training framework to come up with a
hybrid audio representation, which combines handcrafted and data-driven learned
audio features. All the proposed representations were evaluated within the HEAR
NeurIPS 2021 challenge for auditory scene classification and timestamp
detection tasks. Our results indicate that the hybrid model with a
convolutional transformer as the encoder yields superior performance in most
HEAR challenge tasks.
- Abstract(参考訳): スペクトル分析の先駆的な研究から,音声や音声の特徴を抽出する方法が研究されている。
近年の取り組みは、汎用的な音声表現を開発するという野望に導かれる。
例えば、ディープニューラルネットワークは、大規模なオーディオデータセットでトレーニングされた場合、最適な埋め込みを抽出することができる。
この研究は、ブートストラップによる自己教師型学習に基づく既存の手法を拡張し、様々なエンコーダアーキテクチャを提案し、異なる事前学習データセットを使用することの効果を探る。
最後に,手作り音声とデータ駆動学習音声を組み合わせたハイブリッド音声表現を実現するための新しい学習フレームワークを提案する。
提案したすべての表現は、聴覚シーン分類とタイムスタンプ検出タスクのためのHEAR NeurIPS 2021チャレンジで評価された。
その結果,畳み込み変換器をエンコーダとするハイブリッドモデルは,ほとんどの難聴課題において優れた性能をもたらすことがわかった。
関連論文リスト
- AV-SUPERB: A Multi-Task Evaluation Benchmark for Audio-Visual Representation Models [92.92233932921741]
AV-SUPERBベンチマークは,音声・視覚・バイモーダル融合表現の汎用的評価を可能にする。
我々は,最近の5つの自己教師型モデルを評価し,これらのモデルがすべてのタスクに一般化されないことを示す。
我々は,AudioSetを用いた中間タスクの微調整と音声イベント分類によって表現が改善されることを実証した。
論文 参考訳(メタデータ) (2023-09-19T17:35:16Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Jointly Learning Visual and Auditory Speech Representations from Raw
Data [108.68531445641769]
RAVEnは視覚と聴覚の表現を協調的に学習する自己教師型マルチモーダルアプローチである。
我々の設計は、ビデオとオーディオの固有の違いによって駆動される非対称なw.r.t.である。
RAVEnは視覚音声認識における全自己指導手法を超越している。
論文 参考訳(メタデータ) (2022-12-12T21:04:06Z) - Learning General Audio Representations with Large-Scale Training of
Patchout Audio Transformers [6.002503434201551]
大規模データセットで学習した音声変換器を用いて汎用表現を学習する。
その結果,音声変換器で抽出した表現はCNN表現よりも優れていた。
論文 参考訳(メタデータ) (2022-11-25T08:39:12Z) - ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event
Classification [42.95038619688867]
ASiTは、グループマスク付きモデル学習と自己蒸留を用いて、局所的およびグローバルな文脈情報をキャプチャする、新しい自己教師型学習フレームワークである。
我々は、音声イベント分類、キーワードスポッティング、話者識別を含む音声および音声の分類タスクにおいて、事前訓練されたモデルを評価する。
論文 参考訳(メタデータ) (2022-11-23T18:21:09Z) - SLICER: Learning universal audio representations using low-resource
self-supervised pre-training [53.06337011259031]
ラベルなし音声データに事前学習エンコーダを組み込むための自己指導型学習手法を提案する。
我々の主な目的は、多種多様な音声および非音声タスクにまたがる一般化が可能な音声表現を学習することである。
論文 参考訳(メタデータ) (2022-11-02T23:45:33Z) - Matching Text and Audio Embeddings: Exploring Transfer-learning
Strategies for Language-based Audio Retrieval [11.161404854726348]
本稿では,クロスモーダル(テキスト・トゥ・オーディオ)検索に用いる大規模事前学習モデルの解析を行う。
我々は、これらのモデルから抽出された埋め込みをメトリクス学習フレームワークで使用し、一致するオーディオとテキストのペアを接続する。
論文 参考訳(メタデータ) (2022-10-06T11:45:14Z) - Contrastive Audio-Visual Masked Autoencoder [85.53776628515561]
CAV-MAE(Contrastive Audio-Visual Masked Auto-Encoder)
我々の完全自己指導型CAV-MAEは、VGGSoundで65.9%の新しいSOTA精度を実現する。
論文 参考訳(メタデータ) (2022-10-02T07:29:57Z) - WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing [102.45426364965887]
そこで本研究では,フルスタックダウンストリーム音声タスクを解決するための,事前学習型モデルWavLMを提案する。
WavLMはHuBERTフレームワークに基づいて構築されており、音声コンテンツモデリングと話者アイデンティティ保存の両方に重点を置いている。
トレーニングデータセットを60k時間から94k時間までの公開オーディオデータにスケールアップし、そのトレーニング手順を最適化して表現抽出を改善する。
論文 参考訳(メタデータ) (2021-10-26T17:55:19Z) - SSAST: Self-Supervised Audio Spectrogram Transformer [19.09439093130855]
本稿では,非ラベル音声を用いた音声スペクトログラム変換器(AST)モデルを,共同識別・生成型マスマスキング・スペクトログラム・パッチ・モデリング(MSPM)で事前学習することを提案する。
我々は、音声イベント分類、キーワードスポッティング、感情認識、話者識別を含む音声および音声の分類タスクにおいて、事前訓練されたモデルを評価する。
我々の知る限りでは、このフレームワークはオーディオおよび音声領域における最初のパッチベースのセルフ教師あり学習フレームワークであり、ASTのための最初のセルフ教師あり学習フレームワークでもある。
論文 参考訳(メタデータ) (2021-10-19T07:58:28Z) - COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio
Representations [32.456824945999465]
本稿では,学習した音声とその関連タグの潜在表現を調整し,音声表現を学習する手法を提案する。
組込みモデルの性能評価を行い,その性能を3つの異なるタスクにおける特徴抽出器として評価した。
論文 参考訳(メタデータ) (2020-06-15T13:17:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。