On Structural Explanation of Bias in Graph Neural Networks
- URL: http://arxiv.org/abs/2206.12104v1
- Date: Fri, 24 Jun 2022 06:49:21 GMT
- Title: On Structural Explanation of Bias in Graph Neural Networks
- Authors: Yushun Dong, Song Wang, Yu Wang, Tyler Derr, Jundong Li
- Abstract summary: Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems.
GNNs could yield biased results against certain demographic subgroups.
We study a novel research problem of structural explanation of bias in GNNs.
- Score: 40.323880315453906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown satisfying performance in various
graph analytical problems. Hence, they have become the \emph{de facto} solution
in a variety of decision-making scenarios. However, GNNs could yield biased
results against certain demographic subgroups. Some recent works have
empirically shown that the biased structure of the input network is a
significant source of bias for GNNs. Nevertheless, no studies have
systematically scrutinized which part of the input network structure leads to
biased predictions for any given node. The low transparency on how the
structure of the input network influences the bias in GNN outcome largely
limits the safe adoption of GNNs in various decision-critical scenarios. In
this paper, we study a novel research problem of structural explanation of bias
in GNNs. Specifically, we propose a novel post-hoc explanation framework to
identify two edge sets that can maximally account for the exhibited bias and
maximally contribute to the fairness level of the GNN prediction for any given
node, respectively. Such explanations not only provide a comprehensive
understanding of bias/fairness of GNN predictions but also have practical
significance in building an effective yet fair GNN model. Extensive experiments
on real-world datasets validate the effectiveness of the proposed framework
towards delivering effective structural explanations for the bias of GNNs.
Open-source code can be found at https://github.com/yushundong/REFEREE.
Related papers
- ComFairGNN: Community Fair Graph Neural Network [6.946292440025013]
We introduce a novel framework designed to mitigate community-level bias in Graph Neural Networks (GNNs)
Our approach employs a learnable coreset-based debiasing function that addresses bias arising from diverse local neighborhood distributions during GNNs neighborhood aggregation.
arXiv Detail & Related papers (2024-11-07T02:04:34Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks.
malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data.
We propose a principled framework named ELEGANT to study a novel problem of certifiable defense on the fairness level of GNNs.
arXiv Detail & Related papers (2023-11-05T20:29:40Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Interpreting Unfairness in Graph Neural Networks via Training Node
Attribution [46.384034587689136]
We study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes.
Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs.
We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets.
arXiv Detail & Related papers (2022-11-25T21:52:30Z) - On Consistency in Graph Neural Network Interpretation [34.25952902469481]
Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions.
Various algorithms are proposed, but most of them formalize this task by searching the minimal subgraph.
We propose a simple yet effective countermeasure by aligning embeddings.
arXiv Detail & Related papers (2022-05-27T02:58:07Z) - Debiased Graph Neural Networks with Agnostic Label Selection Bias [59.61301255860836]
Most existing Graph Neural Networks (GNNs) are proposed without considering the selection bias in data.
We propose a novel Debiased Graph Neural Networks (DGNN) with a differentiated decorrelation regularizer.
Our proposed model outperforms the state-of-the-art methods and DGNN is a flexible framework to enhance existing GNNs.
arXiv Detail & Related papers (2022-01-19T16:50:29Z) - ProtGNN: Towards Self-Explaining Graph Neural Networks [12.789013658551454]
We propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs.
ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
arXiv Detail & Related papers (2021-12-02T01:16:29Z) - EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks [29.974829042502375]
We develop a framework named EDITS to mitigate the bias in attributed networks.
EDITS works in a model-agnostic manner, which means that it is independent of the specific GNNs applied for downstream tasks.
arXiv Detail & Related papers (2021-08-11T14:07:01Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.