論文の概要: Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images
- arxiv url: http://arxiv.org/abs/2206.12136v1
- Date: Fri, 24 Jun 2022 07:59:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 14:24:33.388317
- Title: Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images
- Title(参考訳): 光コヒーレンス断層画像からのロバストな網膜疾患検出のための特徴表現学習
- Authors: Sharif Amit Kamran, Khondker Fariha Hossain, Alireza Tavakkoli,
Stewart Lee Zuckerbrod, Salah A. Baker
- Abstract要約: 眼科画像は、異なる網膜変性疾患を区別する自動化技術で失敗する、同一の外観の病理を含んでいる可能性がある。
本研究では,3つの学習ヘッドを持つ堅牢な疾患検出アーキテクチャを提案する。
2つのOCTデータセットによる実験結果から,提案モデルが既存の最先端モデルよりも精度,解釈可能性,堅牢性に優れ,網膜外網膜疾患の検出に有用であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ophthalmic images may contain identical-looking pathologies that can cause
failure in automated techniques to distinguish different retinal degenerative
diseases. Additionally, reliance on large annotated datasets and lack of
knowledge distillation can restrict ML-based clinical support systems'
deployment in real-world environments. To improve the robustness and
transferability of knowledge, an enhanced feature-learning module is required
to extract meaningful spatial representations from the retinal subspace. Such a
module, if used effectively, can detect unique disease traits and differentiate
the severity of such retinal degenerative pathologies. In this work, we propose
a robust disease detection architecture with three learning heads, i) A
supervised encoder for retinal disease classification, ii) An unsupervised
decoder for the reconstruction of disease-specific spatial information, and
iii) A novel representation learning module for learning the similarity between
encoder-decoder feature and enhancing the accuracy of the model. Our
experimental results on two publicly available OCT datasets illustrate that the
proposed model outperforms existing state-of-the-art models in terms of
accuracy, interpretability, and robustness for out-of-distribution retinal
disease detection.
- Abstract(参考訳): 眼科画像は、異なる網膜変性疾患を区別する自動化技術で失敗する、同一の外観の病理を含んでいる可能性がある。
さらに、大規模な注釈付きデータセットと知識蒸留の欠如は、実環境におけるmlベースの臨床支援システムのデプロイメントを制限する可能性がある。
知識の堅牢性と伝達性を向上させるために,網膜部分空間から意味のある空間表現を抽出する機能学習モジュールが必要である。
このようなモジュールは、効果的に使用すれば、特有の疾患の特徴を検出し、そのような網膜変性病理の重症度を区別することができる。
本研究では,3つの学習ヘッドを持つ堅牢な疾患検出アーキテクチャを提案する。
一 網膜疾患分類のための監督エンコーダ
二 疾病固有の空間情報の再構成のための教師なしデコーダ、及び
三 エンコーダ・デコーダの特徴の類似性を学習し、モデルの精度を向上させるための新規表現学習モジュール。
2つのOCTデータセットによる実験結果から,提案モデルが既存の最先端モデルよりも精度,解釈可能性,堅牢性に優れ,網膜外網膜疾患の検出に有用であることが示唆された。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - Spatial-aware Transformer-GRU Framework for Enhanced Glaucoma Diagnosis
from 3D OCT Imaging [1.8416014644193066]
本稿では3次元光コヒーレンス・トモグラフィー(OCT)画像の診断値を利用した新しいディープラーニングフレームワークを提案する。
我々は、リッチスライスな特徴抽出のための網膜データに事前学習された視覚変換器と、スライス間空間依存性をキャプチャするための双方向Gated Recurrent Unitを統合する。
大規模データセットに対する実験結果から,提案手法の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-08T22:25:15Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
本稿では,OCT画像から網膜疾患を検出するために,新たな深層アンサンブル畳み込みニューラルネットワークを提案する。
本モデルは,2つの頑健な畳み込みモデルの学習アーキテクチャを用いて,リッチかつマルチレゾリューションな特徴を生成する。
2つのデータセットに関する実験と、他のよく知られた深層畳み込みニューラルネットワークとの比較により、アーキテクチャが分類精度を最大5%向上できることが証明された。
論文 参考訳(メタデータ) (2022-03-03T17:51:01Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
網膜イメージングのための革新的なマルチディセーゼ検出パイプラインを提案する。
当社のパイプラインには、転送学習、クラス重み付け、リアルタイム画像増強、焦点損失利用などの最先端の戦略が含まれます。
論文 参考訳(メタデータ) (2021-03-26T18:02:17Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
網膜画像の画質は、眼の病変や不完全な画像処理のために臨床的に不満足であることが多い。
網膜画像における最も難しい品質劣化問題の1つは、一様でない照明である。
我々はNuI-Goと呼ばれる網膜画像に対する均一でない照明除去ネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-07T04:31:33Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Improving Robustness using Joint Attention Network For Detecting Retinal
Degeneration From Optical Coherence Tomography Images [0.0]
本稿では,2つのジョイントネットワークからなる新しいアーキテクチャとして,病原性特徴表現を用いることを提案する。
公開データセットに対する実験結果から,提案したジョイントネットワークは,未確認データセット上での最先端網膜疾患分類ネットワークの精度と堅牢性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-05-16T20:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。