ER: Equivariance Regularizer for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2206.12142v1
- Date: Fri, 24 Jun 2022 08:18:05 GMT
- Title: ER: Equivariance Regularizer for Knowledge Graph Completion
- Authors: Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Qingming Huang
- Abstract summary: We propose a new regularizer, namely, Equivariance Regularizer (ER)
ER can enhance the generalization ability of the model by employing the semantic equivariance between the head and tail entities.
The experimental results indicate a clear and substantial improvement over the state-of-the-art relation prediction methods.
- Score: 107.51609402963072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor factorization and distanced based models play important roles in
knowledge graph completion (KGC). However, the relational matrices in KGC
methods often induce a high model complexity, bearing a high risk of
overfitting. As a remedy, researchers propose a variety of different
regularizers such as the tensor nuclear norm regularizer. Our motivation is
based on the observation that the previous work only focuses on the "size" of
the parametric space, while leaving the implicit semantic information widely
untouched. To address this issue, we propose a new regularizer, namely,
Equivariance Regularizer (ER), which can suppress overfitting by leveraging the
implicit semantic information. Specifically, ER can enhance the generalization
ability of the model by employing the semantic equivariance between the head
and tail entities. Moreover, it is a generic solution for both distance based
models and tensor factorization based models. The experimental results indicate
a clear and substantial improvement over the state-of-the-art relation
prediction methods.
Related papers
- Toward the Identifiability of Comparative Deep Generative Models [7.5479347719819865]
We propose a theory of identifiability for comparative Deep Generative Models (DGMs)
We show that, while these models lack identifiability across a general class of mixing functions, they surprisingly become identifiable when the mixing function is piece-wise affine.
We also investigate the impact of model misspecification, and empirically show that previously proposed regularization techniques for fitting comparative DGMs help with identifiability when the number of latent variables is not known in advance.
arXiv Detail & Related papers (2024-01-29T06:10:54Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
We propose regularized deep generative model (Reg-DGM) to reduce the variance of generative modeling with limited data.
Reg-DGM uses a pre-trained model to optimize a weighted sum of a certain divergence and the expectation of an energy function.
Empirically, with various pre-trained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data.
arXiv Detail & Related papers (2022-08-30T10:28:50Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder [0.0]
tvGP-VAE is able to explicitly model correlation via the use of kernel functions.
We show that the choice of which correlation structures to explicitly represent in the latent space has a significant impact on model performance.
arXiv Detail & Related papers (2020-06-08T17:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.