A comprehensive comparative evaluation and analysis of Distributional
Semantic Models
- URL: http://arxiv.org/abs/2105.09825v1
- Date: Thu, 20 May 2021 15:18:06 GMT
- Title: A comprehensive comparative evaluation and analysis of Distributional
Semantic Models
- Authors: Alessandro Lenci and Magnus Sahlgren and Patrick Jeuniaux and Amaru
Cuba Gyllensten and Martina Miliani
- Abstract summary: We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
- Score: 61.41800660636555
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Distributional semantics has deeply changed in the last decades. First,
predict models stole the thunder from traditional count ones, and more recently
both of them were replaced in many NLP applications by contextualized vectors
produced by Transformer neural language models. Although an extensive body of
research has been devoted to Distributional Semantic Model (DSM) evaluation, we
still lack a thorough comparison with respect to tested models, semantic tasks,
and benchmark datasets. Moreover, previous work has mostly focused on
task-driven evaluation, instead of exploring the differences between the way
models represent the lexical semantic space. In this paper, we perform a
comprehensive evaluation of type distributional vectors, either produced by
static DSMs or obtained by averaging the contextualized vectors generated by
BERT. First of all, we investigate the performance of embeddings in several
semantic tasks, carrying out an in-depth statistical analysis to identify the
major factors influencing the behavior of DSMs. The results show that i.) the
alleged superiority of predict based models is more apparent than real, and
surely not ubiquitous and ii.) static DSMs surpass contextualized
representations in most out-of-context semantic tasks and datasets.
Furthermore, we borrow from cognitive neuroscience the methodology of
Representational Similarity Analysis (RSA) to inspect the semantic spaces
generated by distributional models. RSA reveals important differences related
to the frequency and part-of-speech of lexical items.
Related papers
- MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
We find that MAUVE can quantify the gaps between the distributions of human-written text and those of modern neural language models.
We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics.
arXiv Detail & Related papers (2022-12-30T07:37:40Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
We introduce DistNLI, a new diagnostic dataset for natural language inference.
We find that the extent of models' understanding is associated with model size and vocabulary size.
arXiv Detail & Related papers (2022-09-11T00:33:28Z) - A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach [0.0]
We perform semantic similarity analysis and modeling on the U.S. Patent Phrase to Phrase Matching dataset using both traditional and transformer-based techniques.
The experimental results demonstrate our methodology's enhanced performance compared to traditional techniques, with an average Pearson correlation score of 0.79.
arXiv Detail & Related papers (2022-07-24T11:06:56Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
We propose a new regularizer, namely, Equivariance Regularizer (ER)
ER can enhance the generalization ability of the model by employing the semantic equivariance between the head and tail entities.
The experimental results indicate a clear and substantial improvement over the state-of-the-art relation prediction methods.
arXiv Detail & Related papers (2022-06-24T08:18:05Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
This article introduces a novel nonparametric methodology for Generalized Linear Models.
It combines the strengths of the binary regression and latent variable formulations for categorical data.
It extends recently published parametric versions of the methodology and generalizes it.
arXiv Detail & Related papers (2021-10-11T04:49:59Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.