論文の概要: Adversarial Zoom Lens: A Novel Physical-World Attack to DNNs
- arxiv url: http://arxiv.org/abs/2206.12251v1
- Date: Thu, 23 Jun 2022 13:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 12:31:55.839510
- Title: Adversarial Zoom Lens: A Novel Physical-World Attack to DNNs
- Title(参考訳): 逆ズームレンズ:DNNに対する新たな物理世界攻撃
- Authors: Chengyin Hu and Weiwen Shi
- Abstract要約: 本稿では,Adrial Zoom Lens (AdvZL) と呼ばれる新しい物理対向攻撃手法を実演する。
AdvZLはズームレンズを使って物理世界の画像をズームイン/アウトし、ターゲットの物体の特性を変えることなくDNNを騙す。
デジタル環境では,AdvZLに基づくデータセットを構築し,DNNに対する等スケール拡大画像の対角性を検証する。
物理環境では、ズームレンズを操作して対象物体の内外をズームインし、対向サンプルを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep neural networks (DNNs) are known to be fragile, no one has
studied the effects of zooming-in and zooming-out of images in the physical
world on DNNs performance. In this paper, we demonstrate a novel physical
adversarial attack technique called Adversarial Zoom Lens (AdvZL), which uses a
zoom lens to zoom in and out of pictures of the physical world, fooling DNNs
without changing the characteristics of the target object. The proposed method
is so far the only adversarial attack technique that does not add physical
adversarial perturbation attack DNNs. In a digital environment, we construct a
data set based on AdvZL to verify the antagonism of equal-scale enlarged images
to DNNs. In the physical environment, we manipulate the zoom lens to zoom in
and out of the target object, and generate adversarial samples. The
experimental results demonstrate the effectiveness of AdvZL in both digital and
physical environments. We further analyze the antagonism of the proposed data
set to the improved DNNs. On the other hand, we provide a guideline for defense
against AdvZL by means of adversarial training. Finally, we look into the
threat possibilities of the proposed approach to future autonomous driving and
variant attack ideas similar to the proposed attack.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は脆弱であることが知られているが、物理世界における画像のズームインとズームアウトがDNNのパフォーマンスに与える影響は研究されていない。
本稿では,対象物体の特性を変化させることなくdnnを騙し,ズームレンズを用いて物理世界の画像をズームイン/アウトし,dnnを騙す,adversarial zoom lens(advzl)と呼ばれる新しい物理敵攻撃手法を提案する。
提案手法は,DNNの物理的摂動を加味しない唯一の逆攻撃手法である。
デジタル環境では,AdvZLに基づくデータセットを構築し,DNNに対する等スケール拡大画像の対角性を検証する。
物理環境では、ズームレンズを操作して、対象オブジェクトをズームイン/アウトし、逆のサンプルを生成します。
実験により,デジタルおよび物理環境におけるAdvZLの有効性が示された。
さらに、改良されたDNNに対して提案したデータセットの敵意を解析する。
一方,我々は,advzlに対する攻撃訓練による防衛指針を提供する。
最後に、将来の自動運転と、提案された攻撃に類似した異種攻撃のアイデアに対する提案手法の脅威の可能性を検討する。
関連論文リスト
- Attack Anything: Blind DNNs via Universal Background Adversarial Attack [17.73886733971713]
ディープニューラルネットワーク(DNN)は、敵の摂動に感受性があり、弱いことが広く実証されている。
本稿では,攻撃効果を多種多様な対象,モデル,タスク間でよく一般化する,攻撃の背景攻撃フレームワークを提案する。
我々は,様々な対象,モデル,タスクにまたがるデジタルドメインと物理ドメインの両方において,包括的かつ厳密な実験を行い,提案手法のあらゆる攻撃の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-17T12:46:53Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - Adversarial alignment: Breaking the trade-off between the strength of an
attack and its relevance to human perception [10.883174135300418]
敵対的な攻撃は長年、深層学習の「アキレスのヒール」と見なされてきた。
本稿では、ImageNetにおけるDNNの敵攻撃に対する堅牢性がどのように発展し、精度が向上し続けているかを検討する。
論文 参考訳(メタデータ) (2023-06-05T20:26:17Z) - Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural
Networks with Neuromorphic Data [15.084703823643311]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率の向上と生物学的に有効なデータ処理機能を提供する。
本稿では,ニューロモルフィックデータセットと多様なトリガーを用いたSNNのバックドア攻撃について検討する。
我々は,攻撃成功率を100%まで達成しつつ,クリーンな精度に無視できる影響を保ちながら,様々な攻撃戦略を提示する。
論文 参考訳(メタデータ) (2023-02-13T11:34:17Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
近年,ディープニューラルネットワーク(DNN)に対する敵対的攻撃が注目されている。
本稿では,画像の分布を操作することで,敵の例を再現する新しい手法を提案する。
本手法は,攻撃の伝達性を大幅に向上させ,未目標シナリオと目標シナリオの両方において最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T09:58:51Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - Bio-Inspired Adversarial Attack Against Deep Neural Networks [28.16483200512112]
本論文は,生体にインスパイアされた設計を応用した,ディープニューラルネットワーク(DNN)に対する新たな敵攻撃を開発する。
我々の知る限りでは、これは動く物体で物理的な攻撃を導入する最初の試みである。
論文 参考訳(メタデータ) (2021-06-30T03:23:52Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
安全クリティカルな監視システムの重要性から、群衆のカウントは多くの注目を集めています。
近年の研究では、ディープニューラルネットワーク(DNN)の手法が敵の攻撃に弱いことが示されている。
群衆カウントモデルのロバスト性を評価するために,Momentumを用いた攻撃戦略としてAdversarial Patch Attackを提案する。
論文 参考訳(メタデータ) (2021-04-22T05:10:55Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
敵対的な例には、深いニューラルネットワークを誤った予測にだますことができる慎重に作られた摂動が含まれます。
誤り拡散のハーフトン化に基づく新しい画像変換防御を提案し、逆転の例に対して防御するための逆転訓練と組み合わせます。
論文 参考訳(メタデータ) (2021-01-23T07:55:02Z) - Robust Attacks on Deep Learning Face Recognition in the Physical World [48.909604306342544]
FaceAdvは、敵のステッカーを使ってFRシステムを騙す物理世界の攻撃だ。
主にステッカージェネレータとトランスフォーマーで構成され、前者は異なる形状のステッカーを作れる。
3種類のFRシステムに対するFaceAdvの有効性を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2020-11-27T02:24:43Z) - Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading [75.73437831338907]
糖尿病網膜症(DR)は、世界中の視覚障害の主要な原因である。
診断を助けるために、多くの最先端の作業が強力なディープニューラルネットワーク(DNN)を構築し、網膜基底画像(RFI)を介してDRを自動的にグレードする。
RFIは一般的に、不正グレードにつながる可能性のあるカメラ露出の問題によって影響を受ける。
本稿では,敵攻撃の観点からこの問題を考察する。
論文 参考訳(メタデータ) (2020-09-19T13:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。