論文の概要: Language Models as Knowledge Embeddings
- arxiv url: http://arxiv.org/abs/2206.12617v1
- Date: Sat, 25 Jun 2022 10:39:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 12:22:31.569768
- Title: Language Models as Knowledge Embeddings
- Title(参考訳): 知識埋め込みとしての言語モデル
- Authors: Xintao Wang, Qianyu He, Jiaqing Liang and Yanghua Xiao
- Abstract要約: 本稿では,言語モデルを用いて知識埋め込みを導出するLMKEを提案する。
我々は、記述に基づくKE学習を対照的な学習フレームワークで定式化し、トレーニングと評価の効率を向上させる。
- 参考スコア(独自算出の注目度): 26.384327693266837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge embeddings (KE) represent a knowledge graph (KG) by embedding
entities and relations into continuous vector spaces. Existing methods are
mainly structure-based or description-based. Structure-based methods learn
representations that preserve the inherent structure of KGs. They cannot well
represent abundant long-tail entities in real-world KGs with limited structural
information. Description-based methods leverage textual information and
language models. Prior approaches in this direction barely outperform
structure-based ones, and suffer from problems like expensive negative sampling
and restrictive description demand. In this paper, we propose LMKE, which
adopts Language Models to derive Knowledge Embeddings, aiming at both enriching
representations of long-tail entities and solving problems of prior
description-based methods. We formulate description-based KE learning with a
contrastive learning framework to improve efficiency in training and
evaluation. Experimental results show that LMKE achieves state-of-the-art
performance on KE benchmarks of link prediction and triple classification,
especially for long-tail entities.
- Abstract(参考訳): 知識埋め込み(KE)は、実体と関係を連続ベクトル空間に埋め込むことによって知識グラフ(KG)を表す。
既存の手法は主に構造ベースまたは記述ベースである。
構造に基づく手法は、KGの固有の構造を保存する表現を学ぶ。
限られた構造情報を持つ実世界のkgsでは、豊富なロングテールの実体を表現できない。
記述ベース手法は、テキスト情報と言語モデルを活用する。
この方向の以前のアプローチは、構造ベースのアプローチをほとんど上回らず、高価な負のサンプリングや制限的な記述要求といった問題に苦しめられている。
本稿では,知識埋め込みを導出するために言語モデルを採用するlmkeを提案する。
比較学習フレームワークを用いて記述ベースのke学習を定式化し,学習と評価の効率を向上させる。
実験結果から, LMKEは, リンク予測と三重分類のKEベンチマークにおいて, 特にロングテールエンティティに対して, 最先端の性能を達成することが示された。
関連論文リスト
- SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
知識追跡(KT)は、学生が次の質問に正しく答えるかどうかを判断することを目的としている。
大規模言語モデルを用いた構造認識帰納的知識追跡モデル(SINKT)
SINKTは、学生の知識状態と質問表現とを相互作用させることで、対象の質問に対する学生の反応を予測する。
論文 参考訳(メタデータ) (2024-07-01T12:44:52Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
我々は,文脈知識の不足を補うMPIKGCを提案し,大規模言語モデル(LLM)をクエリすることでKGCを改善する。
我々は4つの記述に基づくKGCモデルと4つのデータセットに基づくフレームワークの広範囲な評価を行い、リンク予測とトリプルト分類のタスクについて検討した。
論文 参考訳(メタデータ) (2024-03-04T12:16:15Z) - KICGPT: Large Language Model with Knowledge in Context for Knowledge
Graph Completion [27.405080941584533]
本稿では,大規模言語モデルと3次元KGCレトリバーを統合したフレームワークKICGPTを提案する。
追加のトレーニングオーバーヘッドを発生させることなく、長い尾の問題を軽減する。
ベンチマークデータセットの実証結果は、KICGPTの有効性を示し、トレーニングオーバーヘッドは小さく、微調整は行わない。
論文 参考訳(メタデータ) (2024-02-04T08:01:07Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Unifying Structure and Language Semantic for Efficient Contrastive
Knowledge Graph Completion with Structured Entity Anchors [0.3913403111891026]
知識グラフ補完(KGC)の目標は、すでに知られている訓練された事実を用いて、KGの欠落したリンクを予測することである。
本稿では,帰納的推論の力を失うことなく,構造情報と言語意味を効果的に統一する手法を提案する。
論文 参考訳(メタデータ) (2023-11-07T11:17:55Z) - Making Large Language Models Perform Better in Knowledge Graph Completion [42.175953129260236]
大言語モデル(LLM)に基づく知識グラフ補完(KGC)は、LLMによるKGの欠落を予測することを目的としている。
本稿では,LLMに構造情報を組み込む手法について検討する。
論文 参考訳(メタデータ) (2023-10-10T14:47:09Z) - MoCoSA: Momentum Contrast for Knowledge Graph Completion with
Structure-Augmented Pre-trained Language Models [11.57782182864771]
構造強化事前学習言語モデル(MoCoSA)を用いた知識グラフ補完のためのMomentum Contrastを提案する。
また,WN18RRでは2.5%,OpenBG500では21%向上した。
論文 参考訳(メタデータ) (2023-08-16T08:09:10Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
本稿では,知識三重項の自然言語記述と構造情報とを共同で組み込むことを提案する。
本手法は,学習済み言語モデルを微調整することで,完了作業のための知識グラフを埋め込む。
各種知識グラフベンチマーク実験により,本手法の最先端性能を実証した。
論文 参考訳(メタデータ) (2022-09-19T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。