Minority Report: A Graph Network Oracle for In Situ Visualization
- URL: http://arxiv.org/abs/2206.12683v1
- Date: Sat, 25 Jun 2022 16:06:45 GMT
- Title: Minority Report: A Graph Network Oracle for In Situ Visualization
- Authors: Krishna Kumar, Paul Navr\'atil, Andrew Solis, Joseph Vantassel
- Abstract summary: This paper demonstrates the potential for using a machine-learning-based simulation surrogate as an oracle to identify expected critical regions of a large-scale simulation.
We develop a distributed asynchronous in situ visualization by integrating TACC Galaxy with CB-Geo MPM for material point simulation of granular flows.
We employ a PyTorch-based 3D Graph Network Simulator (GNS) trained on granular flow problems as an oracle to predict the dynamics of granular flows.
- Score: 1.6058099298620423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In situ visualization techniques are hampered by a lack of foresight: crucial
simulation phenomena can be missed due to a poor sampling rate or insufficient
detail at critical timesteps. Keeping a human in the loop is impractical, and
defining statistical triggers can be difficult. This paper demonstrates the
potential for using a machine-learning-based simulation surrogate as an oracle
to identify expected critical regions of a large-scale simulation. These
critical regions are used to drive the in situ analysis, providing greater data
fidelity and analysis resolution with an equivalent I/O budget to a traditional
in situ framework. We develop a distributed asynchronous in situ visualization
by integrating TACC Galaxy with CB-Geo MPM for material point simulation of
granular flows. We employ a PyTorch-based 3D Graph Network Simulator (GNS)
trained on granular flow problems as an oracle to predict the dynamics of
granular flows. Critical regions of interests are manually tagged in GNS for in
situ rendering in MPM.
Related papers
- Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Three-dimensional granular flow simulation using graph neural
network-based learned simulator [2.153852088624324]
We use a graph neural network (GNN) to develop a simulator for granular flows.
The simulator reproduces the overall behaviors of column collapses with various aspect ratios.
The speed of GNS outperforms high-fidelity numerical simulators by 300 times.
arXiv Detail & Related papers (2023-11-13T15:54:09Z) - Graph Neural Processes for Spatio-Temporal Extrapolation [36.01312116818714]
We study the task of extrapolation-temporal processes that generates data at target locations from surrounding contexts in a graph.
Existing methods either use learning-grained models like Neural Networks or statistical approaches like Gaussian for this task.
We propose Spatio Graph Neural Processes (STGNP), a neural latent variable model which commands these capabilities simultaneously.
arXiv Detail & Related papers (2023-05-30T03:55:37Z) - Graph Neural Network-based surrogate model for granular flows [2.153852088624324]
Granular flow dynamics is crucial for assessing various geotechnical risks, including landslides and debris flows.
Traditional continuum and discrete numerical methods are limited by their computational cost in simulating large-scale systems.
We develop a graph neural network-based simulator (GNS) that takes the current state of granular flow and predicts the next state using explicit integration by learning the local interaction laws.
arXiv Detail & Related papers (2023-05-09T07:28:12Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
We describe a pre-training technique that utilizes large datasets of 3D molecular structures at equilibrium.
Inspired by recent advances in noise regularization, our pre-training objective is based on denoising.
arXiv Detail & Related papers (2022-05-31T22:28:34Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
Origin-Destination Estimation plays an important role in traffic management and traffic simulation in the era of Intelligent Transportation System (ITS)
Previous model-based models face the under-determined challenge, thus desperate demand for additional assumptions and extra data exists.
We propose Cyclic Graph Attentive Matching (C-GAME) based on a novel Graph Matcher with double-layer attention mechanism.
arXiv Detail & Related papers (2021-11-26T08:57:21Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.