Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features
- URL: http://arxiv.org/abs/2206.12815v1
- Date: Sun, 26 Jun 2022 07:54:09 GMT
- Title: Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features
- Authors: Unaiza Sajid, Dr. Rizwan Ahmed Khan, Dr. Shahid Munir Shah, Dr.
Sheeraz Arif
- Abstract summary: It is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis.
In this article, a novel framework for classification of breast cancer using mammograms is proposed.
The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer is one of the leading causes of death among women across the
globe. It is difficult to treat if detected at advanced stages, however, early
detection can significantly increase chances of survival and improves lives of
millions of women. Given the widespread prevalence of breast cancer, it is of
utmost importance for the research community to come up with the framework for
early detection, classification and diagnosis. Artificial intelligence research
community in coordination with medical practitioners are developing such
frameworks to automate the task of detection. With the surge in research
activities coupled with availability of large datasets and enhanced
computational powers, it expected that AI framework results will help even more
clinicians in making correct predictions. In this article, a novel framework
for classification of breast cancer using mammograms is proposed. The proposed
framework combines robust features extracted from novel Convolutional Neural
Network (CNN) features with handcrafted features including HOG (Histogram of
Oriented Gradients) and LBP (Local Binary Pattern). The obtained results on
CBIS-DDSM dataset exceed state of the art.
Related papers
- Mammo-Clustering:A Weakly Supervised Multi-view Global-Local Context Clustering Network for Detection and Classification in Mammography [13.581151516877238]
We propose a weakly supervised multi-view mammography early screening model for breast cancer based on context clustering.
Our model shows potential in reducing the burden on doctors and increasing the feasibility of breast cancer screening for women in underdeveloped regions.
arXiv Detail & Related papers (2024-09-23T10:17:13Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Breast Cancer Detection and Diagnosis: A comparative study of
state-of-the-arts deep learning architectures [3.883460584034766]
The survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low.
Medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions.
This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT)
arXiv Detail & Related papers (2023-05-31T15:21:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Artificial Intelligence For Breast Cancer Detection: Trends & Directions [0.0]
This article analyzes different imaging modalities that have been exploited by researchers to automate the task of breast cancer detection.
This article then summarizes AI and computer vision based state-of-the-art methods proposed in the last decade, to detect breast cancer.
arXiv Detail & Related papers (2021-10-03T07:22:21Z) - MS-GWNN:multi-scale graph wavelet neural network for breast cancer
diagnosis [8.679247709183567]
It is crucial to take multi-scale information of tissue structure into account in the detection of breast cancer.
In this work, we present a novel graph convolutional neural network for his image classification of breast cancer.
arXiv Detail & Related papers (2020-12-29T06:04:27Z) - Deep learning approach for breast cancer diagnosis [1.6244541005112747]
We develop a new network architecture inspired by the U-net structure that can be used for effective and early detection of breast cancer.
Results indicate a high rate of sensitivity and specificity that indicate potential usefulness of the proposed approach in clinical use.
arXiv Detail & Related papers (2020-03-10T00:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.