Mammo-Clustering:A Weakly Supervised Multi-view Global-Local Context Clustering Network for Detection and Classification in Mammography
- URL: http://arxiv.org/abs/2409.14876v1
- Date: Mon, 23 Sep 2024 10:17:13 GMT
- Title: Mammo-Clustering:A Weakly Supervised Multi-view Global-Local Context Clustering Network for Detection and Classification in Mammography
- Authors: Shilong Yang, Chulong Zhang, Qi Zang, Juan Yu, Liang Zeng, Xiao Luo, Yexuan Xing, Xin Pan, Qi Li, Xiaokun Liang, Yaoqin Xie,
- Abstract summary: We propose a weakly supervised multi-view mammography early screening model for breast cancer based on context clustering.
Our model shows potential in reducing the burden on doctors and increasing the feasibility of breast cancer screening for women in underdeveloped regions.
- Score: 13.581151516877238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer has long posed a significant threat to women's health, making early screening crucial for mitigating its impact. However, mammography, the preferred method for early screening, faces limitations such as the burden of double reading by radiologists, challenges in widespread adoption in remote and underdeveloped areas, and obstacles in intelligent early screening development due to data constraints. To address these challenges, we propose a weakly supervised multi-view mammography early screening model for breast cancer based on context clustering. Context clustering, a feature extraction structure that is neither CNN nor transformer, combined with multi-view learning for information complementation, presents a promising approach. The weak supervision design specifically addresses data limitations. Our model achieves state-of-the-art performance with fewer parameters on two public datasets, with an AUC of 0.828 on the Vindr-Mammo dataset and 0.805 on the CBIS-DDSM dataset. Our model shows potential in reducing the burden on doctors and increasing the feasibility of breast cancer screening for women in underdeveloped regions.
Related papers
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement [0.36355629235144304]
Our study highlights the importance of various deep learning mechanisms, such as image attention radiomic features, gating mechanism, and bilateral asymmetry-based fine-tuning.
Our findings suggest that RADIfusion can provide clinicians with a powerful tool for breast cancer risk assessment.
arXiv Detail & Related papers (2023-04-01T08:18:13Z) - Breast Cancer Classification using Deep Learned Features Boosted with
Handcrafted Features [0.0]
It is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis.
In this article, a novel framework for classification of breast cancer using mammograms is proposed.
The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features.
arXiv Detail & Related papers (2022-06-26T07:54:09Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - COIN: Contrastive Identifier Network for Breast Mass Diagnosis in
Mammography [16.603205672169608]
Computer-aided breast cancer diagnosis in mammography is a challenging problem, stemming from mammographical data scarcity and data entanglement.
We propose a deep learning framework, named Contrastive Identifier Network (textscCOIN), which integrates adversarial augmentation and manifold-based contrastive learning.
COIN outperforms the state-of-the-art related algorithms for solving breast cancer diagnosis problem by a considerable margin, achieving 93.4% accuracy and 95.0% AUC score.
arXiv Detail & Related papers (2020-12-29T10:02:02Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.