Contextual embedding and model weighting by fusing domain knowledge on
Biomedical Question Answering
- URL: http://arxiv.org/abs/2206.12866v1
- Date: Sun, 26 Jun 2022 12:47:38 GMT
- Title: Contextual embedding and model weighting by fusing domain knowledge on
Biomedical Question Answering
- Authors: Yuxuan Lu, Jingya Yan, Zhixuan Qi, Zhongzheng Ge, Yongping Du
- Abstract summary: We propose a contextual method that combines open-domain model aoa and biobert model pre-trained on biomedical domain data.
We adopt unsupervised pre-training on large biomedical corpus and supervised fine-tuning on biomedical question answering.
Experimental results show that our model outperforms state-of-the-art system by a large margin.
- Score: 5.294803923794887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical Question Answering aims to obtain an answer to the given question
from the biomedical domain. Due to its high requirement of biomedical domain
knowledge, it is difficult for the model to learn domain knowledge from limited
training data. We propose a contextual embedding method that combines
open-domain QA model \aoa and \biobert model pre-trained on biomedical domain
data. We adopt unsupervised pre-training on large biomedical corpus and
supervised fine-tuning on biomedical question answering dataset. Additionally,
we adopt an MLP-based model weighting layer to automatically exploit the
advantages of two models to provide the correct answer. The public dataset
\biomrc constructed from PubMed corpus is used to evaluate our method.
Experimental results show that our model outperforms state-of-the-art system by
a large margin.
Related papers
- BioMNER: A Dataset for Biomedical Method Entity Recognition [25.403593761614424]
We propose a novel dataset for biomedical method entity recognition.
We employ an automated BioMethod entity recognition and information retrieval system to assist human annotation.
Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns.
arXiv Detail & Related papers (2024-06-28T16:34:24Z) - Efficient Medical Question Answering with Knowledge-Augmented Question Generation [5.145812785735094]
We introduce a method to improve the proficiency of a small language model in the medical domain by employing a two-fold approach.
We first fine-tune the model on a corpus of medical textbooks.
Then, we use GPT-4 to generate questions similar to the downstream task, prompted with textbook knowledge, and use them to fine-tune the model.
arXiv Detail & Related papers (2024-05-23T14:53:52Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text [82.7001841679981]
BioMedLM is a 2.7 billion parameter GPT-style autoregressive model trained exclusively on PubMed abstracts and full articles.
When fine-tuned, BioMedLM can produce strong multiple-choice biomedical question-answering results competitive with larger models.
BioMedLM can also be fine-tuned to produce useful answers to patient questions on medical topics.
arXiv Detail & Related papers (2024-03-27T10:18:21Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Exploring the In-context Learning Ability of Large Language Model for
Biomedical Concept Linking [4.8882241537236455]
This research investigates a method that exploits the in-context learning capabilities of large models for biomedical concept linking.
The proposed approach adopts a two-stage retrieve-and-rank framework.
It achieved an accuracy of 90.% in BC5CDR disease entity normalization and 94.7% in chemical entity normalization.
arXiv Detail & Related papers (2023-07-03T16:19:50Z) - LLaVA-Med: Training a Large Language-and-Vision Assistant for
Biomedicine in One Day [85.19963303642427]
We propose a cost-efficient approach for training a vision-language conversational assistant that can answer open-ended research questions of biomedical images.
The model first learns to align biomedical vocabulary using the figure-caption pairs as is, then learns to master open-ended conversational semantics.
This enables us to train a Large Language and Vision Assistant for BioMedicine in less than 15 hours (with eight A100s)
arXiv Detail & Related papers (2023-06-01T16:50:07Z) - BioADAPT-MRC: Adversarial Learning-based Domain Adaptation Improves
Biomedical Machine Reading Comprehension Task [4.837365865245979]
We present an adversarial learning-based domain adaptation framework for the biomedical machine reading comprehension task.
BioADAPT-MRC is a neural network-based method to address the discrepancies in the marginal distributions between the general and biomedical domain datasets.
arXiv Detail & Related papers (2022-02-26T16:14:27Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - Boosting Low-Resource Biomedical QA via Entity-Aware Masking Strategies [25.990479833023166]
Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature.
We propose a simple yet unexplored approach, which we call biomedical entity-aware masking (BEM)
We encourage masked language models to learn entity-centric knowledge based on the pivotal entities characterizing the domain at hand, and employ those entities to drive the LM fine-tuning. Experimental results show performance on par with state-of-the-art models on several biomedical QA datasets.
arXiv Detail & Related papers (2021-02-16T18:51:13Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.