Data Augmentation for Dementia Detection in Spoken Language
- URL: http://arxiv.org/abs/2206.12879v1
- Date: Sun, 26 Jun 2022 13:40:25 GMT
- Title: Data Augmentation for Dementia Detection in Spoken Language
- Authors: Anna Hl\'edikov\'a, Dominika Woszczyk, Alican Acman, Soteris Demetriou
and Bj\"orn Schuller
- Abstract summary: Recent deep-learning techniques can offer a faster diagnosis and have shown promising results.
They require large amounts of labelled data which is not easily available for the task of dementia detection.
One effective solution to sparse data problems is data augmentation, though the exact methods need to be selected carefully.
- Score: 1.7324358447544175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dementia is a growing problem as our society ages, and detection methods are
often invasive and expensive. Recent deep-learning techniques can offer a
faster diagnosis and have shown promising results. However, they require large
amounts of labelled data which is not easily available for the task of dementia
detection. One effective solution to sparse data problems is data augmentation,
though the exact methods need to be selected carefully. To date, there has been
no empirical study of data augmentation on Alzheimer's disease (AD) datasets
for NLP and speech processing. In this work, we investigate data augmentation
techniques for the task of AD detection and perform an empirical evaluation of
the different approaches on two kinds of models for both the text and audio
domains. We use a transformer-based model for both domains, and SVM and Random
Forest models for the text and audio domains, respectively. We generate
additional samples using traditional as well as deep learning based methods and
show that data augmentation improves performance for both the text- and
audio-based models and that such results are comparable to state-of-the-art
results on the popular ADReSS set, with carefully crafted architectures and
features.
Related papers
- Latent Paraphrasing: Perturbation on Layers Improves Knowledge Injection in Language Models [54.385486006684495]
LaPael is a latent-level paraphrasing method that applies input-dependent noise to early Large Language Models layers.
Our experiments on question-answering benchmarks demonstrate that LaPael improves knowledge injection over standard fine-tuning and existing noise-based approaches.
arXiv Detail & Related papers (2024-11-01T15:47:05Z) - Resolving Domain Shift For Representations Of Speech In Non-Invasive Brain Recordings [3.5297361401370044]
We focus on non-invasive data collected using magnetoencephalography (MEG)
To the best of our knowledge, this study is the first ever application of feature-level, deep learning based on MEG neuroimaging data.
arXiv Detail & Related papers (2024-10-25T21:56:23Z) - Exploring Multimodal Approaches for Alzheimer's Disease Detection Using
Patient Speech Transcript and Audio Data [10.782153332144533]
Alzheimer's disease (AD) is a common form of dementia that severely impacts patient health.
This study investigates various methods for detecting AD using patients' speech and transcripts data from the DementiaBank Pitt database.
arXiv Detail & Related papers (2023-07-05T12:40:11Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Side-aware Meta-Learning for Cross-Dataset Listener Diagnosis with
Subjective Tinnitus [38.66127142638335]
This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis.
Our method achieves a high accuracy of 73.8% in the cross-dataset classification.
arXiv Detail & Related papers (2022-05-03T03:17:44Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
Natural language processing and machine learning provide promising techniques for reliably detecting Alzheimer's disease (AD)
We compare and contrast the performance of two such approaches for AD detection on the recent ADReSS challenge dataset.
We observe that fine-tuned BERT models, given the relative importance of linguistics in cognitive impairment detection, outperform feature-based approaches on the AD detection task.
arXiv Detail & Related papers (2020-07-26T04:50:47Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
We show that generative models can be used as an effective approach for data augmentation.
In this paper, we investigate the application of a similar approach to different types of speech and audio-based features extracted from our automatic dementia detection system.
arXiv Detail & Related papers (2020-04-13T15:05:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.