Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection
- URL: http://arxiv.org/abs/2303.08019v1
- Date: Tue, 14 Mar 2023 16:03:28 GMT
- Title: Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection
- Authors: Jinchao Li, Kaitao Song, Junan Li, Bo Zheng, Dongsheng Li, Xixin Wu,
Xunying Liu, Helen Meng
- Abstract summary: Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
- Score: 69.53626024091076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the global population aging rapidly, Alzheimer's disease (AD) is
particularly prominent in older adults, which has an insidious onset and leads
to a gradual, irreversible deterioration in cognitive domains (memory,
communication, etc.). Speech-based AD detection opens up the possibility of
widespread screening and timely disease intervention. Recent advances in
pre-trained models motivate AD detection modeling to shift from low-level
features to high-level representations. This paper presents several efficient
methods to extract better AD-related cues from high-level acoustic and
linguistic features. Based on these features, the paper also proposes a novel
task-oriented approach by modeling the relationship between the participants'
description and the cognitive task. Experiments are carried out on the ADReSS
dataset in a binary classification setup, and models are evaluated on the
unseen test set. Results and comparison with recent literature demonstrate the
efficiency and superior performance of proposed acoustic, linguistic and
task-oriented methods. The findings also show the importance of semantic and
syntactic information, and feasibility of automation and generalization with
the promising audio-only and task-oriented methods for the AD detection task.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection [4.961581278723015]
Alzheimer's disease (AD) stands as the predominant cause of dementia, characterized by a gradual decline in speech and language capabilities.
Recent deep-learning advancements have facilitated automated AD detection through spontaneous speech.
Common transcript-based detection methods directly model text patterns in each utterance without a global view of the patient's linguistic characteristics.
arXiv Detail & Related papers (2024-09-19T07:58:07Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
Natural language processing and machine learning provide promising techniques for reliably detecting Alzheimer's disease.
We compare and contrast the performance of ten linear regression models for predicting Mini-Mental Status exam scores.
We find that, for the given task, handcrafted linguistic features are more significant than acoustic and learned features.
arXiv Detail & Related papers (2022-09-13T15:35:31Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care to delay further progression.
This paper presents the development of a state-of-the-art Conformer based speech recognition system built on the DementiaBank Pitt corpus for automatic AD detection.
arXiv Detail & Related papers (2022-06-23T12:50:55Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
Natural language processing and machine learning provide promising techniques for reliably detecting Alzheimer's disease (AD)
We compare and contrast the performance of two such approaches for AD detection on the recent ADReSS challenge dataset.
We observe that fine-tuned BERT models, given the relative importance of linguistics in cognitive impairment detection, outperform feature-based approaches on the AD detection task.
arXiv Detail & Related papers (2020-07-26T04:50:47Z) - Alzheimer's Dementia Recognition through Spontaneous Speech: The ADReSS
Challenge [10.497861245133086]
The ADReSS Challenge at INTERSPEECH 2020 defines a shared task through which different approaches to the automated recognition of Alzheimer's dementia can be compared.
ADReSS provides researchers with a benchmark speech dataset which has been acoustically pre-processed and balanced in terms of age and gender.
arXiv Detail & Related papers (2020-04-14T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.