論文の概要: An Empirical Study on Bug Severity Estimation using Source Code Metrics and Static Analysis
- arxiv url: http://arxiv.org/abs/2206.12927v2
- Date: Fri, 2 Aug 2024 19:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 00:54:45.394647
- Title: An Empirical Study on Bug Severity Estimation using Source Code Metrics and Static Analysis
- Title(参考訳): ソースコードメトリクスと静的解析を用いたバグの深刻度推定に関する実証的研究
- Authors: Ehsan Mashhadi, Shaiful Chowdhury, Somayeh Modaberi, Hadi Hemmati, Gias Uddin,
- Abstract要約: 我々は、19のJavaオープンソースプロジェクトと異なる重度ラベルを持つ3,358のバグギーメソッドを調査した。
結果は、コードメトリクスがバグの多いコードを予測するのに有用であることを示しているが、バグの深刻度レベルを見積もることはできない。
当社の分類では、セキュリティバグがほとんどのケースで高い重大性を持っているのに対して、エッジ/バウンダリ障害は低い重大性を持っていることが示されています。
- 参考スコア(独自算出の注目度): 0.8621608193534838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past couple of decades, significant research efforts have been devoted to the prediction of software bugs (i.e., defects). In general, these works leverage a diverse set of metrics, tools, and techniques to predict which classes, methods, lines, or commits are buggy. However, most existing work in this domain treats all bugs the same, which is not the case in practice. The more severe the bugs the higher their consequences. Therefore, it is important for a defect prediction method to estimate the severity of the identified bugs, so that the higher severity ones get immediate attention. In this paper, we provide a quantitative and qualitative study on two popular datasets (Defects4J and Bugs.jar), using 10 common source code metrics, and two popular static analysis tools (SpotBugs and Infer) for analyzing their capability to predict defects and their severity. We studied 3,358 buggy methods with different severity labels from 19 Java open-source projects. Results show that although code metrics are useful in predicting buggy code (Lines of the Code, Maintainable Index, FanOut, and Effort metrics are the best), they cannot estimate the severity level of the bugs. In addition, we observed that static analysis tools have weak performance in both predicting bugs (F1 score range of 3.1%-7.1%) and their severity label (F1 score under 2%). We also manually studied the characteristics of the severe bugs to identify possible reasons behind the weak performance of code metrics and static analysis tools in estimating their severity. Also, our categorization shows that Security bugs have high severity in most cases while Edge/Boundary faults have low severity. Finally, we discuss the practical implications of the results and propose new directions for future research.
- Abstract(参考訳): 過去数十年間、ソフトウェアバグ(欠陥)の予測に多大な研究努力が注がれている。
一般的に、これらの作業はさまざまなメトリクス、ツール、テクニックを活用して、どのクラス、メソッド、行、コミットがバグが多いかを予測します。
しかし、このドメインの既存の作業のほとんどはすべてのバグを扱います。
バグが厳しければ多いほど、結果が大きくなる。
したがって, バグの重大度を推定する欠陥予測手法が重要であり, 高い重大度がすぐに注目される。
本稿では,10のソースコードメトリクスを用いた2つの一般的なデータセット(Defects4JとBugs.jar)と,その欠陥とその重症度を予測するための2つの人気のある静的解析ツール(SpotBugsとInfer)について,定量的かつ定性的に検討する。
我々は、19のJavaオープンソースプロジェクトから異なる重度ラベルを持つ3,358のバグギーメソッドを調査した。
その結果、コードメトリクスはバグの多いコードを予測するのに役立ちます(Lines of the Code、Mantainable Index、FanOut、Effortのメトリクスはベストです)が、バグの深刻度レベルを見積もることはできません。
さらに,静的解析ツールは,予測バグ(F1スコアは3.1%-7.1%)と重度ラベル(F1スコアは2%以下)の両方において,弱い性能を示した。
また、深刻なバグの特徴を手動で調べて、その深刻さを見積もる上で、コードメトリクスと静的解析ツールの弱いパフォーマンスの背後にある可能性のある理由を特定しました。
また、当社の分類では、ほとんどのケースでセキュリティバグは深刻度が高いのに対して、エッジ/バウンダリ障害は深刻度が低いことが示されています。
最後に,実験結果の実際的意義について考察し,今後の研究に向けた新たな方向性を提案する。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Method-Level Bug Severity Prediction using Source Code Metrics and LLMs [0.628122931748758]
本稿では,ソースコードのメトリクス,大言語モデル(LLM)を用いたソースコード表現,およびバグ重大度ラベルの予測におけるそれらの組み合わせについて検討する。
以上の結果から,決定木モデルとランダムフォレストモデルは,いくつかの評価指標に関して,他のモデルよりも優れていたことが示唆された。
CodeBERTの微調整により、いくつかの評価指標の29%-140%の範囲でバグの重大度予測が大幅に改善される。
論文 参考訳(メタデータ) (2023-09-06T14:38:07Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - ADPTriage: Approximate Dynamic Programming for Bug Triage [0.0]
オンラインバグトリアージタスクのためのマルコフ決定プロセス(MDP)モデルを開発した。
私たちはADPTriageと呼ばれるADPベースのバグトリアージソリューションを提供しています。
以上の結果から, 代入精度と固定時間の観点から, ミオピックアプローチよりも有意な改善が見られた。
論文 参考訳(メタデータ) (2022-11-02T04:42:21Z) - Infrared: A Meta Bug Detector [10.541969253100815]
我々はメタバグ検出と呼ばれる新しいアプローチを提案し、既存の学習ベースのバグ検出よりも3つの重要な利点を提供している。
我々のメタバグ検出装置(MBD)は,ヌルポインタの参照,配列インデックスのアウト・オブ・バウンド,ファイルハンドルのリーク,さらには並列プログラムにおけるデータ競合など,さまざまなバグの発見に有効であることを示す。
論文 参考訳(メタデータ) (2022-09-18T09:08:51Z) - On Distribution Shift in Learning-based Bug Detectors [4.511923587827301]
まず、モデルをバグ検出領域に適応させるため、次に実際のバグ検出領域に適応させるために、モデルを実際の配布に向けて駆動するために、バグ検出装置を2つのフェーズで訓練する。
我々は,本手法を広範に研究した3種類のバグタイプに対して評価し,実際のバグ分布を捉えるために慎重に設計された新しいデータセットを構築した。
論文 参考訳(メタデータ) (2022-04-21T12:17:22Z) - Learning to Reduce False Positives in Analytic Bug Detectors [12.733531603080674]
偽陽性のバグ警告を識別するためのトランスフォーマーに基づく学習手法を提案する。
我々は,静的解析の精度を17.5%向上させることができることを示した。
論文 参考訳(メタデータ) (2022-03-08T04:26:26Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
本稿では,バグトリアージ問題を解決するための新しいディープラーニングモデルを提案する。
モデルは、注目された双方向のリカレントニューラルネットワークと畳み込みニューラルネットワークに基づいている。
ランキングの質を向上させるために,バージョン管理システムのアノテーションから追加情報を利用することを提案する。
論文 参考訳(メタデータ) (2022-01-14T00:16:57Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
静的解析ツールによって報告されたラベル問題に対する差分解析に基づくアプローチであるD2Aを提案する。
D2Aを使用して大きなラベル付きデータセットを生成し、脆弱性識別のためのモデルをトレーニングします。
論文 参考訳(メタデータ) (2021-02-16T07:46:53Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。