RF Signal Classification with Synthetic Training Data and its Real-World
Performance
- URL: http://arxiv.org/abs/2206.12967v1
- Date: Sun, 26 Jun 2022 20:47:33 GMT
- Title: RF Signal Classification with Synthetic Training Data and its Real-World
Performance
- Authors: Stefan Scholl
- Abstract summary: This paper investigates the impact of different RF signal impairments modeled in synthetic training data with respect to the real-world performance.
It achieves an accuracy of up to 95 % in real-world operation by using carefully designed synthetic training data only.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural nets are a powerful method for the classification of radio signals in
the electromagnetic spectrum. These neural nets are often trained with
synthetically generated data due to the lack of diverse and plentiful real RF
data. However, it is often unclear how neural nets trained on synthetic data
perform in real-world applications. This paper investigates the impact of
different RF signal impairments (such as phase, frequency and sample rate
offsets, receiver filters, noise and channel models) modeled in synthetic
training data with respect to the real-world performance. For that purpose,
this paper trains neural nets with various synthetic training datasets with
different signal impairments. After training, the neural nets are evaluated
against real-world RF data collected by a software defined radio receiver in
the field. This approach reveals which modeled signal impairments should be
included in carefully designed synthetic datasets. The investigated showcase
example can classify RF signals into one of 20 different radio signal types
from the shortwave bands. It achieves an accuracy of up to 95 % in real-world
operation by using carefully designed synthetic training data only.
Related papers
- Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Classification of multi-frequency RF signals by extreme learning, using
magnetic tunnel junctions as neurons and synapses [46.000685134136525]
We show that magnetic tunnel junctions can process RF inputs with multiple frequencies in parallel.
Using a backpropagation-free method called extreme learning, we classify noisy images encoded by RF signals.
These results are a key step for embedded radiofrequency artificial intelligence.
arXiv Detail & Related papers (2022-11-02T14:09:42Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Self-Supervised RF Signal Representation Learning for NextG Signal
Classification with Deep Learning [5.624291722263331]
Self-supervised learning enables the learning of useful representations from Radio Frequency (RF) signals themselves.
We show that the sample efficiency (the number of labeled samples required to achieve a certain accuracy performance) of AMR can be significantly increased by learning signal representations with self-supervised learning.
arXiv Detail & Related papers (2022-07-07T02:07:03Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Training neural networks with synthetic electrocardiograms [3.1583465114791105]
We present a method for training neural networks with synthetic electrocardiograms that mimic signals produced by a wearable single lead electrocardiogram monitor.
We use domain randomization where the synthetic signal properties such as the waveform shape, RR-intervals and noise are varied for every training example.
Models trained with synthetic data are compared to their counterparts trained with real data.
Experiments show robust performance with different seeds and training examples on different test sets without any test set specific tuning.
arXiv Detail & Related papers (2021-11-11T12:39:33Z) - MLReal: Bridging the gap between training on synthetic data and real
data applications in machine learning [1.9852463786440129]
We describe a novel approach to enhance supervised training on synthetic data with real data features.
In the training stage, the input data are from the synthetic domain and the auto-correlated data are from the real domain.
In the inference/application stage, the input data are from the real subset domain and the mean of the autocorrelated sections are from the synthetic data subset domain.
arXiv Detail & Related papers (2021-09-11T14:43:34Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
We present complex-valued Convolutional Neural Networks (CNNs) for RF fingerprinting.
We focus on the problem of fingerprinting wireless IoT devices in-the-wild using Deep Learning (DL) techniques.
arXiv Detail & Related papers (2021-05-08T03:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.