Training neural networks with synthetic electrocardiograms
- URL: http://arxiv.org/abs/2111.06175v1
- Date: Thu, 11 Nov 2021 12:39:33 GMT
- Title: Training neural networks with synthetic electrocardiograms
- Authors: Matti Kaisti, Juho Laitala, Antti Airola
- Abstract summary: We present a method for training neural networks with synthetic electrocardiograms that mimic signals produced by a wearable single lead electrocardiogram monitor.
We use domain randomization where the synthetic signal properties such as the waveform shape, RR-intervals and noise are varied for every training example.
Models trained with synthetic data are compared to their counterparts trained with real data.
Experiments show robust performance with different seeds and training examples on different test sets without any test set specific tuning.
- Score: 3.1583465114791105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for training neural networks with synthetic
electrocardiograms that mimic signals produced by a wearable single lead
electrocardiogram monitor. We use domain randomization where the synthetic
signal properties such as the waveform shape, RR-intervals and noise are varied
for every training example. Models trained with synthetic data are compared to
their counterparts trained with real data. Detection of r-waves in
electrocardiograms recorded during different physical activities and in atrial
fibrillation is used to compare the models. By allowing the randomization to
increase beyond what is typically observed in the real-world data the
performance is on par or superseding the performance of networks trained with
real data. Experiments show robust performance with different seeds and
training examples on different test sets without any test set specific tuning.
The method makes possible to train neural networks using practically
free-to-collect data with accurate labels without the need for manual
annotations and it opens up the possibility of extending the use of synthetic
data on cardiac disease classification when disease specific a priori
information is used in the electrocardiogram generation. Additionally the
distribution of data can be controlled eliminating class imbalances that are
typically observed in health related data and additionally the generated data
is inherently private.
Related papers
- Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
This paper presents various self-supervision strategies to enhance the performance of a time-series based Diffusion convolution neural network (DCRNN) model.
The learned weights in the self-supervision pretraining phase can be transferred to the supervised training phase to boost the model's prediction capability.
arXiv Detail & Related papers (2022-06-28T17:15:49Z) - RF Signal Classification with Synthetic Training Data and its Real-World
Performance [0.0]
This paper investigates the impact of different RF signal impairments modeled in synthetic training data with respect to the real-world performance.
It achieves an accuracy of up to 95 % in real-world operation by using carefully designed synthetic training data only.
arXiv Detail & Related papers (2022-06-26T20:47:33Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
We studied the synthetic ECG generation capability of 5 different models from the generative adversarial network (GAN) family.
The results show that all the tested models can to an extent successfully mass-generate acceptable heartbeats with high similarity in morphological features.
arXiv Detail & Related papers (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
We investigate the issues related to applying a Deep Learning model on heterogeneous datasets.
We show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions.
We then evaluate the use of Transfer Learning to adapt the model to the different datasets.
arXiv Detail & Related papers (2021-10-26T14:26:55Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.