Detecting Schizophrenia with 3D Structural Brain MRI Using Deep Learning
- URL: http://arxiv.org/abs/2206.12980v1
- Date: Sun, 26 Jun 2022 21:44:33 GMT
- Title: Detecting Schizophrenia with 3D Structural Brain MRI Using Deep Learning
- Authors: Junhao Zhang, Vishwanatha M. Rao, Ye Tian, Yanting Yang, Nicolas
Acosta, Zihan Wan, Pin-Yu Lee, Chloe Zhang, Lawrence S. Kegeles, Scott A.
Small and Jia Guo
- Abstract summary: Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain.
Deep learning is capable of almost perfectly distinguishing schizophrenia patients from healthy controls on unseen structural MRI scans.
Subcortical regions and ventricles are the most predictive brain regions.
- Score: 12.128463028063146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Schizophrenia is a chronic neuropsychiatric disorder that causes distinct
structural alterations within the brain. We hypothesize that deep learning
applied to a structural neuroimaging dataset could detect disease-related
alteration and improve classification and diagnostic accuracy. We tested this
hypothesis using a single, widely available, and conventional T1-weighted MRI
scan, from which we extracted the 3D whole-brain structure using standard
post-processing methods. A deep learning model was then developed, optimized,
and evaluated on three open datasets with T1-weighted MRI scans of patients
with schizophrenia. Our proposed model outperformed the benchmark model, which
was also trained with structural MR images using a 3D CNN architecture. Our
model is capable of almost perfectly (area under the ROC curve = 0.987)
distinguishing schizophrenia patients from healthy controls on unseen
structural MRI scans. Regional analysis localized subcortical regions and
ventricles as the most predictive brain regions. Subcortical structures serve a
pivotal role in cognitive, affective, and social functions in humans, and
structural abnormalities of these regions have been associated with
schizophrenia. Our finding corroborates that schizophrenia is associated with
widespread alterations in subcortical brain structure and the subcortical
structural information provides prominent features in diagnostic
classification. Together, these results further demonstrate the potential of
deep learning to improve schizophrenia diagnosis and identify its structural
neuroimaging signatures from a single, standard T1-weighted brain MRI.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Spatial Sequence Attention Network for Schizophrenia Classification from Structural Brain MR Images [1.7199363076349776]
This study introduces a deep learning methodology for the classification of individuals with Schizophrenia.
We achieve this by implementing a diversified attention mechanism known as Spatial Sequence Attention (SSA)
Our experimental studies conducted on a clinical dataset have revealed that the proposed attention mechanism outperforms the existing Squeeze & Excitation Network for Schizophrenia classification.
arXiv Detail & Related papers (2024-06-18T14:55:41Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia.
Current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis.
We propose a deep learning based approach for both problems of disease detection and differential diagnosis.
arXiv Detail & Related papers (2022-11-25T13:25:18Z) - Multi-site Diagnostic Classification Of Schizophrenia Using 3D CNN On
Aggregated Task-based fMRI Data [0.0]
The mechanisms that underlie the development of schizophrenia, as well as its relapse, symptomatology, and treatment, continue to be a mystery.
The absence of appropriate analytic tools to deal with the variable and complicated nature of schizophrenia may be one of the factors that contribute to the development of this disorder.
Deep learning has the potential to become a powerful tool for understanding the mechanisms that are at the root of schizophrenia.
arXiv Detail & Related papers (2022-10-11T08:12:36Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.