Evaluation of 3D Counterfactual Brain MRI Generation
- URL: http://arxiv.org/abs/2508.02880v1
- Date: Mon, 04 Aug 2025 20:20:59 GMT
- Title: Evaluation of 3D Counterfactual Brain MRI Generation
- Authors: Pengwei Sun, Wei Peng, Lun Yu Li, Yixin Wang, Kilian M. Pohl,
- Abstract summary: We convert six generative models into 3D counterfactual approaches by incorporating an anatomy-guided framework based on a causal graph.<n>Our results indicate that anatomically grounded conditioning successfully modifies the targeted anatomical regions.
- Score: 20.30513265599243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual generation offers a principled framework for simulating hypothetical changes in medical imaging, with potential applications in understanding disease mechanisms and generating physiologically plausible data. However, generating realistic structural 3D brain MRIs that respect anatomical and causal constraints remains challenging due to data scarcity, structural complexity, and the lack of standardized evaluation protocols. In this work, we convert six generative models into 3D counterfactual approaches by incorporating an anatomy-guided framework based on a causal graph, in which regional brain volumes serve as direct conditioning inputs. Each model is evaluated with respect to composition, reversibility, realism, effectiveness and minimality on T1-weighted brain MRIs (T1w MRIs) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In addition, we test the generalizability of each model with respect to T1w MRIs of the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA). Our results indicate that anatomically grounded conditioning successfully modifies the targeted anatomical regions; however, it exhibits limitations in preserving non-targeted structures. Beyond laying the groundwork for more interpretable and clinically relevant generative modeling of brain MRIs, this benchmark highlights the need for novel architectures that more accurately capture anatomical interdependencies.
Related papers
- From Flat to Round: Redefining Brain Decoding with Surface-Based fMRI and Cortex Structure [11.760848227175591]
Reconstructing visual stimuli from human brain activity (e.g., fMRI) bridges neuroscience and computer vision.<n>We propose a novel sphere tokenizer that explicitly models fMRI signals as spatially coherent 2D spherical data on the cortical surface.<n>We also propose integration of structural MRI (sMRI) data, enabling personalized encoding of individual anatomical variations.
arXiv Detail & Related papers (2025-07-22T09:34:39Z) - Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
We introduce NeuroSTORM, a framework that learns from 4D fMRI volumes and enables efficient knowledge transfer across diverse applications.<n>NeuroSTORM is pre-trained on 28.65 million fMRI frames (>9,000 hours) from over 50,000 subjects across multiple centers and ages 5 to 100.<n>It outperforms existing methods across five tasks: age/gender prediction, phenotype prediction, disease diagnosis, fMRI-to-image retrieval, and task-based fMRI.
arXiv Detail & Related papers (2025-06-11T23:51:01Z) - WASABI: A Metric for Evaluating Morphometric Plausibility of Synthetic Brain MRIs [14.385794683789301]
WASABI (Wasserstein-Based Anatomical Brain Index) is a new metric to assess the anatomical realism of synthetic brain MRIs.<n>Based on experiments on two real datasets and synthetic MRIs from five generative models, WASABI demonstrates higher sensitivity in quantifying anatomical discrepancies.
arXiv Detail & Related papers (2025-04-30T16:16:14Z) - BrainMRDiff: A Diffusion Model for Anatomically Consistent Brain MRI Synthesis [11.73947657846282]
BrainMRDiff is a novel topology-preserving, anatomy-guided diffusion model for brain MRI.<n>To achieve this, we introduce two key modules: Tumor+Structure Aggregation (TSA) and Topology-Guided Anatomy Preservation (TGAP)<n>TSA integrates diverse anatomical structures with tumor information, forming a comprehensive conditioning mechanism for the diffusion process.<n>Results demonstrate that BrainMRDiff surpasses existing baselines, achieving performance improvements of 23.33% on the BraTS-AG dataset and 33.33% on the BraTS-Met dataset.
arXiv Detail & Related papers (2025-04-06T16:16:50Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
We propose a new generative model, Brain Synth, to synthesize metadata-conditioned (e.g., age- and sex-specific) MRIs.
Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically accurate, with a small effect size between real and synthetic MRIs.
Our synthetic MRIs can significantly improve the training of a Convolutional Neural Network to identify accelerated aging effects.
arXiv Detail & Related papers (2023-10-07T00:05:47Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Detecting Schizophrenia with 3D Structural Brain MRI Using Deep Learning [12.128463028063146]
Schizophrenia is a chronic neuropsychiatric disorder that causes distinct structural alterations within the brain.
Deep learning is capable of almost perfectly distinguishing schizophrenia patients from healthy controls on unseen structural MRI scans.
Subcortical regions and ventricles are the most predictive brain regions.
arXiv Detail & Related papers (2022-06-26T21:44:33Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.