論文の概要: Self-supervised Learning in Remote Sensing: A Review
- arxiv url: http://arxiv.org/abs/2206.13188v1
- Date: Mon, 27 Jun 2022 11:04:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 15:07:22.073251
- Title: Self-supervised Learning in Remote Sensing: A Review
- Title(参考訳): リモートセンシングにおける自己指導型学習
- Authors: Yi Wang, Conrad M Albrecht, Nassim Ait Ali Braham, Lichao Mou, Xiao
Xiang Zhu
- Abstract要約: 自己教師付き学習(SSL)はコンピュータビジョンとリモートセンシングのコミュニティの両方で関心を惹きつけている。
我々は、リモートセンシングの文脈におけるコンピュータビジョンのためのSSLの概念と最新の開発について紹介し、レビューする。
我々は、SSL for Earth Observation (SSL4EO) における将来的な研究の方向性のリストを特定し、両ドメイン間の実りある相互作用の道を開く。
- 参考スコア(独自算出の注目度): 22.137317420319878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In deep learning research, self-supervised learning (SSL) has received great
attention triggering interest within both the computer vision and remote
sensing communities. While there has been a big success in computer vision,
most of the potential of SSL in the domain of earth observation remains locked.
In this paper, we provide an introduction to, and a review of the concepts and
latest developments in SSL for computer vision in the context of remote
sensing. Further, we provide a preliminary benchmark of modern SSL algorithms
on popular remote sensing datasets, verifying the potential of SSL in remote
sensing and providing an extended study on data augmentations. Finally, we
identify a list of promising directions of future research in SSL for earth
observation (SSL4EO) to pave the way for fruitful interaction of both domains.
- Abstract(参考訳): 深層学習研究において、自己教師付き学習(SSL)はコンピュータビジョンとリモートセンシングコミュニティの両方に関心を惹きつけている。
コンピュータビジョンでは大きな成功を収めてきたが、地球観測領域におけるSSLの可能性の大部分は、まだロックされている。
本稿では、リモートセンシングの文脈におけるコンピュータビジョンのためのSSLの概念と最新の開発について紹介し、レビューする。
さらに、一般的なリモートセンシングデータセット上での最新のSSLアルゴリズムの予備ベンチマーク、リモートセンシングにおけるSSLの可能性の検証、データ拡張に関する広範な研究を提供する。
最後に、SSL for Earth Observation (SSL4EO) における将来的な研究の方向性のリストを特定し、両ドメイン間の実りある相互作用の道を開く。
関連論文リスト
- A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
視覚タスクにおける自己教師あり学習(SSL)の適用は注目されている。
SSL手法を体系的に分類する包括的分類法を開発した。
SSLの背後にあるモチベーションについて議論し、人気のある事前トレーニングタスクをレビューし、この分野の課題と進歩を強調します。
論文 参考訳(メタデータ) (2024-08-30T07:38:28Z) - Can We Break Free from Strong Data Augmentations in Self-Supervised Learning? [18.83003310612038]
ディープニューラルネットワーク(DNN)における限定ラベル付きデータの課題に対処するための、有望なソリューションとして、自己教師付き学習(SSL)が登場した。
SSLモデルのパフォーマンスと学習メカニズムを形作る上で,SSLの動作が重要な役割を担っていることを明らかにする。
本稿では,事前知識を統合した新しい学習手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T12:53:48Z) - Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls
and Opportunities [50.231837687221685]
自己教師付き学習(SSL)は、機械学習とその多くの現実世界のアプリケーションに変化をもたらした。
非教師なし異常検出(AD)は、自己生成性擬似異常によりSSLにも乗じている。
論文 参考訳(メタデータ) (2023-08-28T07:55:01Z) - Explaining, Analyzing, and Probing Representations of Self-Supervised
Learning Models for Sensor-based Human Activity Recognition [2.2082422928825136]
自己教師付き学習(SSL)フレームワークは、センサベースヒューマンアクティビティ認識(HAR)に広く応用されている。
本稿では,最近のSSLフレームワークであるSimCLRとVICRegの深層表現を解析することを目的とする。
論文 参考訳(メタデータ) (2023-04-14T07:53:59Z) - A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends [82.64268080902742]
自己教師付き学習(SSL)は、ラベル付きラベルを頼らずにラベル付きデータから識別的特徴を学習することを目的としている。
SSLは最近大きな注目を集め、多くの関連するアルゴリズムの開発に繋がった。
本稿では,アルゴリズム的側面,アプリケーション領域,3つの重要なトレンド,オープンな研究課題を含む,多様なSSL手法のレビューを行う。
論文 参考訳(メタデータ) (2023-01-13T14:41:05Z) - Understanding and Improving the Role of Projection Head in
Self-Supervised Learning [77.59320917894043]
自己教師付き学習(SSL)は、人間のラベル付きデータアノテーションにアクセスせずに有用な特徴表現を作成することを目的としている。
現在の対照的な学習アプローチは、InfoNCEの目的を最適化するために、あるバックボーンネットワークの端にパラメータ化されたプロジェクションヘッドを付加する。
学習可能なプロジェクションヘッドが、トレーニング後にそれを破棄する場合、なぜ必要となるのか?
論文 参考訳(メタデータ) (2022-12-22T05:42:54Z) - Audio Self-supervised Learning: A Survey [60.41768569891083]
SSL(Self-Supervised Learning)は、人間のアノテーションを必要とせずに、大規模データから一般的な表現を見つけることを目的としている。
コンピュータビジョンと自然言語処理の分野での成功により、近年では音声処理や音声処理の分野で採用されている。
論文 参考訳(メタデータ) (2022-03-02T15:58:29Z) - Learning from Very Few Samples: A Survey [80.06120185496403]
機械学習の分野では、サンプル学習が重要で難しいものはほとんどない。
通常、一般化能力を保証するために数百から数千の教師付きサンプルを含むサンプル学習アルゴリズムはほとんどない。
論文 参考訳(メタデータ) (2020-09-06T06:13:09Z) - Adversarial Self-Supervised Learning for Semi-Supervised 3D Action
Recognition [123.62183172631443]
本稿では,SSLと半教師付きスキームを緊密に結合する新しいフレームワークであるAdversarial Self-Supervised Learning (ASSL)を紹介する。
具体的には,3次元動作認識のための学習表現の識別能力を向上させる効果的なSSL方式を設計する。
論文 参考訳(メタデータ) (2020-07-12T08:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。