Polarons in Binary Bose-Einstein Condensates
- URL: http://arxiv.org/abs/2206.13738v6
- Date: Thu, 24 Aug 2023 12:22:46 GMT
- Title: Polarons in Binary Bose-Einstein Condensates
- Authors: Ning Liu and Z. C. Tu
- Abstract summary: We derive an effective Fr"ohlich Hamiltonian using the generalized Bogoliubov transformation.
The effective Fr"ohlich Hamiltonian encompasses two types of effective interactions: impurity-density (ID) coupling and impurity-spin (IS) coupling.
- Score: 5.356826859571684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bose polarons are quasiparticles formed through the interaction between
impurities and Bose-Einstein condensates. In this paper, we derive an effective
Fr\"{o}hlich Hamiltonian using the generalized Bogoliubov transformation. The
effective Fr\"{o}hlich Hamiltonian encompasses two types of effective
interactions: impurity-density (ID) coupling and impurity-spin (IS) coupling.
Furthermore, we employ the Lee-Low-Pines variational approach to investigate
the relevant properties of Bose polarons induced by the ID and IS coupling.
These properties include the ground state energy, effective mass, and average
number of virtual phonons. Our findings reveal that the contribution resulting
from IS couplings to the ground energy decreases to zero near the
miscible-immiscible boundary. Additionally, the increase of the IS coupling
induces a greater number of virtual phonons, impeding the movement of
impurities and leading to a significant increase in the effective mass of Bose
polarons.
Related papers
- Static impurity in a mesoscopic system of SU($N$) fermionic matter-waves [0.0]
We show that the impurity opens a gap in the energy spectrum selectively, constrained by the total effective spin and interaction.
Our findings hold significance for the fundamental understanding of the localized impurity problem and its potential applications for sensing and interferometry in quantum technology.
arXiv Detail & Related papers (2024-11-21T19:25:14Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Manipulating solid-state spin concentration through charge transport [17.571298724628114]
Solid-state spin defects are attractive candidates for developing quantum sensors and simulators.
We develop a wide-field imaging setup integrated with a fast single photon detector array.
We demonstrate the concentration of the dominant spin defects by a factor of 2 while keeping the $T$ increase of the NV center.
arXiv Detail & Related papers (2023-02-24T16:53:28Z) - Mobile impurities interacting with a few one-dimensional lattice bosons [0.0]
We report a comprehensive study of the ground-state properties of one and two bosonic impurities immersed in small one-dimensional optical lattices loaded with a few bosons.
We report polaron and bipolaron energies across the superfluid to Mott-insulator transition and confirm the formation of bipolaron bound states induced by repulsive interactions.
arXiv Detail & Related papers (2022-07-19T14:49:51Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Repulsively diverging gradient of the density functional in the Reduced
Density Matrix Functional Theory [0.0]
We show that the existence of the Bose-Einstein condensation force is completely universal for any type of pair-interaction.
We also show the existence of an analogous repulsive gradient in the fermionic RDMFT for the $N$-fermion singlet sector.
arXiv Detail & Related papers (2021-03-29T11:04:30Z) - Self-stabilized Bose polarons [0.0]
We show a solution of the Bose polaron problem beyond the Bogoliubov approximation.
We show that the Bose polaron energy remains bounded from below across the resonance.
Our results demonstrate how the dressing cloud replaces the attractive impurity potential with an effective many-body potential that excludes binding.
arXiv Detail & Related papers (2021-02-26T17:35:00Z) - Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the
Strong Coupling Regime [0.0]
We present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a non-perturbative theory.
We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings.
arXiv Detail & Related papers (2021-01-28T13:50:03Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.