Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system
- URL: http://arxiv.org/abs/2206.13849v1
- Date: Tue, 28 Jun 2022 09:28:02 GMT
- Title: Coalescence of non-Markovian dissipation, quantum Zeno effect and
non-Hermitian physics, in a simple realistic quantum system
- Authors: G. Mouloudakis and P. Lambropoulos
- Abstract summary: We develop a theoretical framework in terms of the time-dependent Schrodinger equation of motion.
The link between the peaked structure of the effective decay rate of the qubit that interacts indirectly with the environment, and the onset of the quantum Zeno effect is discussed in great detail.
Our treatment and results have revealed an intricate interplay between non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagonalization of the effective Hamiltonian describing an open quantum
system is the usual method of tracking its exceptional points. Although, such a
method is successful for tracking EPs in Markovian systems, it may be
problematic in non-Markovian systems where a closed expression of the effective
Hamiltonian describing the open system may not exist. In this work we provide
an alternative method of tracking EPs in open quantum systems, using an
experimentally measurable quantity, namely the effective decay rate of a qubit.
The quantum system under consideration consists of two non-identical
interacting qubits, one of which is coupled to an external environment. We
develop a theoretical framework in terms of the time-dependent Schrodinger
equation of motion, which provides analytical closed form solutions of the
Laplace transforms of the qubit amplitudes for an arbitrary spectral density of
the boundary reservoir. The link between the peaked structure of the effective
decay rate of the qubit that interacts indirectly with the environment, and the
onset of the quantum Zeno effect, is discussed in great detail revealing the
connections between the latter and the presence of exceptional points. Our
treatment and results have in addition revealed an intricate interplay between
non-Markovian dynamics, quantum Zeno effect and non-Hermitian physics
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Space-time dual quantum Zeno effect: Interferometric engineering of open
quantum system dynamics [0.0]
We show that the superposition of multiple trajectories can result in quantum state freezing.
Non-trivial Dicke-like super(sub)radiance can be triggered without utilizing multi-atom correlations.
arXiv Detail & Related papers (2022-08-04T05:49:53Z) - Strongly interacting trapped one-dimensional quantum gases: an exact
solution [0.0]
Review collects the predictions coming from a family of exact solutions.
The exact solution applies to bosons, fermions and mixtures.
It also predicts the exact quantum dynamics at all the times.
arXiv Detail & Related papers (2022-01-07T08:06:43Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - Hybrid coupling optomechanically assisted nonreciprocal photon blockade [5.472101264158104]
dissipation coupling of hybrid dissipation and dispersion optomechanical system can induce the coupling between the environment and system.
Cross-Kerr coupling can also be used in a more widely region in quantum information processing and quantum simulation.
arXiv Detail & Related papers (2020-11-30T00:40:28Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.