論文の概要: TE2Rules: Explaining Tree Ensembles using Rules
- arxiv url: http://arxiv.org/abs/2206.14359v5
- Date: Tue, 23 Jan 2024 21:55:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 18:32:33.209487
- Title: TE2Rules: Explaining Tree Ensembles using Rules
- Title(参考訳): TE2Rules:ルールを使ってツリーアンサンブルを説明する
- Authors: G Roshan Lal and Xiaotong Chen and Varun Mithal
- Abstract要約: 本稿では,ルールリストを通じて二分分類木アンサンブルモデルを記述する新しい手法であるTE2Rulesを紹介する。
TE2Rulesが生成したルールは、元のモデルと密接に近似し、高い忠実性を保証する。
実験の結果、TE2Rulesは数百本の木のアンサンブルに効果的にスケールすることが示された。
- 参考スコア(独自算出の注目度): 4.588656982178107
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tree Ensemble (TE) models, such as Gradient Boosted Trees, often achieve
optimal performance on tabular datasets, yet their lack of transparency poses
challenges for comprehending their decision logic. This paper introduces
TE2Rules (Tree Ensemble to Rules), a novel approach for explaining binary
classification tree ensemble models through a list of rules, particularly
focusing on explaining the minority class. Many state-of-the-art explainers
struggle with minority class explanations, making TE2Rules valuable in such
cases. The rules generated by TE2Rules closely approximate the original model,
ensuring high fidelity, providing an accurate and interpretable means to
understand decision-making. Experimental results demonstrate that TE2Rules
scales effectively to tree ensembles with hundreds of trees, achieving higher
fidelity within runtimes comparable to baselines. TE2Rules allows for a
trade-off between runtime and fidelity, enhancing its practical applicability.
The implementation is available here: https://github.com/linkedin/TE2Rules.
- Abstract(参考訳): Gradient Boosted Trees(リンク)のようなTree Ensemble(TE)モデルは、表形式のデータセット上で最適なパフォーマンスを達成することが多いが、透明性の欠如は、決定ロジックを理解する上での課題となっている。
本稿では,二分分類木アンサンブルモデルを説明するための新しい手法であるte2rules(tree ensemble to rules)を紹介する。
多くの最先端の解説者は少数派による説明に苦慮し、TE2Rulesはそのような場合に価値がある。
TE2Rulesが生成したルールは、元のモデルを近似し、高い忠実性を確保し、意思決定を理解するための正確かつ解釈可能な手段を提供する。
実験の結果、te2rulesは数百本の木を持つツリーアンサンブルに効果的にスケールし、ベースラインに匹敵するランタイム内で高い忠実度を達成する。
TE2Rulesは実行時と忠実度の間のトレードオフを可能にし、実用性を高める。
実装は以下の通りである。 https://github.com/linkedin/TE2Rules。
関連論文リスト
- A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers [20.416696003269674]
本稿では,数万のルールを含む木アンサンブル分類法を説明するために,拡張性のある視覚解析手法を提案する。
我々は,これらのルールを階層レベルで優先順位付けするための,異常バイアスモデル削減手法を開発した。
本手法は,共通ルールと異常ルールの両方を深く理解し,包括性を犠牲にすることなく解釈性を向上させる。
論文 参考訳(メタデータ) (2024-09-05T01:48:11Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z) - Rule By Example: Harnessing Logical Rules for Explainable Hate Speech
Detection [13.772240348963303]
Rule By Example(RBE)は、テキストコンテンツモデレーションのタスクに対する論理規則から学習するための、新規なコントラスト学習手法である。
RBEはルール基底の予測を提供することができ、典型的なディープラーニングベースのアプローチと比較して説明可能でカスタマイズ可能な予測を可能にする。
論文 参考訳(メタデータ) (2023-07-24T16:55:37Z) - Logical Entity Representation in Knowledge-Graphs for Differentiable
Rule Learning [71.05093203007357]
本稿では,知識グラフ内のエンティティのコンテキスト情報をエンコードするための論理エンティティ・リプレゼンテーション(LERP)を提案する。
LERPは、エンティティの隣接部分グラフ上の確率論的論理関数のベクトルとして設計されている。
我々のモデルは知識グラフ補完において他のルール学習法よりも優れており、最先端のブラックボックス法に匹敵する、あるいは優れている。
論文 参考訳(メタデータ) (2023-05-22T05:59:22Z) - RulE: Knowledge Graph Reasoning with Rule Embedding [69.31451649090661]
我々は、論理ルールを活用してKG推論を強化する、textbfRulE(ルール埋め込みのためのスタンド)と呼ばれる原則的なフレームワークを提案する。
RulEは、既存の三重項と一階規則からルールの埋め込みを学習し、統一された埋め込み空間において、textbfentities、textbfrelations、textbflogical rulesを共同で表現する。
複数のベンチマークの結果、我々のモデルは既存の埋め込みベースのアプローチやルールベースのアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-10-24T06:47:13Z) - Bayes Point Rule Set Learning [5.065947993017157]
解釈可能性は、機械学習アルゴリズムの設計においてますます重要な役割を担っている。
可分正規形式は、規則の集合を表現する最も解釈可能な方法である。
本稿では、DNF型ルールセットを学習するために、FIND-Sアルゴリズムの効果的なボトムアップ拡張を提案する。
論文 参考訳(メタデータ) (2022-04-11T16:50:41Z) - Visual Exploration of Machine Learning Model Behavior with Hierarchical
Surrogate Rule Sets [13.94542147252982]
本稿では,ユーザ定義パラメータに基づく階層的ルールを生成するアルゴリズムである階層的サロゲートルール(HSR)を提案する。
我々はまた、HSRと対話型代理ルール可視化を統合した視覚分析(VA)システムであるSuREにも貢献する。
パラメータ感度,時間性能,および代理決定木との比較により,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2022-01-19T17:03:35Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
我々は,reDT(rerectified decision tree)と呼ばれる知識蒸留に基づく決定木拡張を提案する。
我々は,ソフトラベルを用いたトレーニングを可能にする標準決定木の分割基準と終了条件を拡張した。
次に,教師モデルから抽出したソフトラベルに基づいて,新しいジャックニフェ法を用いてReDTを訓練する。
論文 参考訳(メタデータ) (2020-08-21T10:45:25Z) - BoxE: A Box Embedding Model for Knowledge Base Completion [53.57588201197374]
知識ベース補完(KBC)は、知識ベース(KB)に存在する情報を活用することにより、行方不明な事実を自動的に推測することを目的とする。
既存の埋め込みモデルは、以下の制限の少なくとも1つに該当する。
BoxEは、エンティティをポイントとして、関係をハイパー矩形(またはボックス)の集合として埋め込む
論文 参考訳(メタデータ) (2020-07-13T09:40:49Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。