論文の概要: Fair Machine Learning in Healthcare: A Review
- arxiv url: http://arxiv.org/abs/2206.14397v2
- Date: Tue, 16 Aug 2022 15:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 09:31:24.281467
- Title: Fair Machine Learning in Healthcare: A Review
- Title(参考訳): 医療における公正な機械学習:レビュー
- Authors: Qizhang Feng, Mengnan Du, Na Zou, Xia Hu
- Abstract要約: 医療のための機械学習において公平性の問題が特定されており、特定のグループに対して限られた医療資源を不公平に割り当てたり、過剰な健康リスクを負ったりしている。
公平な問題を露呈し、バイアスを要約し、緩和方法を整理し、将来の機会とともに課題を指摘することで橋を架けます。
- 参考スコア(独自算出の注目度): 53.85062165821434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benefiting from the digitization of healthcare data and the development of
computing power, machine learning methods are increasingly used in the
healthcare domain. Fairness problems have been identified in machine learning
for healthcare, resulting in an unfair allocation of limited healthcare
resources or excessive health risks for certain groups. Therefore, addressing
the fairness problems has recently attracted increasing attention from the
healthcare community. However, the intersection of machine learning for
healthcare and fairness in machine learning remains understudied. In this
review, we build the bridge by exposing fairness problems, summarizing possible
biases, sorting out mitigation methods and pointing out challenges along with
opportunities for the future.
- Abstract(参考訳): 医療データのデジタル化とコンピューティングパワーの発達により、機械学習の手法は医療分野でますます使われるようになっている。
医療のための機械学習において公平性の問題が特定されており、特定のグループの限られた医療資源や過剰な健康リスクが不公平に割り当てられている。
そのため, 健康問題への対処は近年, 医療コミュニティから注目が集まっている。
しかし、医療のための機械学習と機械学習における公平性の交点はまだ未検討のままである。
本稿では,公平性問題を明らかにし,バイアスを要約し,緩和手法を整理し,今後の課題を指摘することで橋梁を構築する。
関連論文リスト
- What is Fair? Defining Fairness in Machine Learning for Health [0.6311610943467981]
本稿では,健康のための機械学習におけるフェアネスの概念について検討する。
本研究は、一般に使われている公正度指標の概要と、公開電子健康記録データセットのケーススタディによる議論を補完するものである。
また、健康の公平性を定義する上での現在の課題と機会を強調し、今後の研究の展望についても論じる。
論文 参考訳(メタデータ) (2024-06-13T16:41:30Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
この研究は、回帰フェアネスの概念としてエラーパリティを示し、グループフェアネスを評価するためのテスト手法を導入する。
続いて、いくつかの統計上のグループを比較し、格差を探索し、影響されたグループを特定するのに適した置換テストが実施される。
全体として、提案された回帰公正性テスト手法は、公正な機械学習文献のギャップを埋め、より大きなアカウンタビリティ評価とアルゴリズム監査の一部として機能する可能性がある。
論文 参考訳(メタデータ) (2022-08-16T17:47:20Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Algorithm Fairness in AI for Medicine and Healthcare [4.626801344708786]
アルゴリズムの公平性は 公平なケアを提供する上で 難しい問題です
人種のサブ人口にまたがるAIモデルの最近の評価では、患者の診断、治療、医療費の請求などにおいて、大きな不平等が明らかになっている。
論文 参考訳(メタデータ) (2021-10-01T18:18:13Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Assessing Fairness in Classification Parity of Machine Learning Models
in Healthcare [19.33981403623531]
医療における分類の公平性に関する予備的結果を示す。
また,医療の文脈において,公平性を向上し,適切な分類アルゴリズムを選択するための探索的手法を提案する。
論文 参考訳(メタデータ) (2021-02-07T04:46:27Z) - An Empirical Characterization of Fair Machine Learning For Clinical Risk
Prediction [7.945729033499554]
臨床的意思決定を導くための機械学習の使用は、既存の健康格差を悪化させる可能性がある。
近年のいくつかの研究は、この問題をアルゴリズム的公正(英語版)の問題と位置づけている。
我々は,グループフェアネス違反の罰則がモデル性能とグループフェアネスの一連の尺度に与える影響を実験的に評価する。
論文 参考訳(メタデータ) (2020-07-20T17:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。