Notes on Pseudo Entropy Amplification
- URL: http://arxiv.org/abs/2206.14551v1
- Date: Wed, 29 Jun 2022 12:03:05 GMT
- Title: Notes on Pseudo Entropy Amplification
- Authors: Yutaka Ishiyama, Riku Kojima, Sho Matsui, Kotaro Tamaoka
- Abstract summary: We study pseudo entropy for a particular combination of entangled states in qubit systems, two-dimensional free conformal field theories (CFT), and two-dimensional holographic CFT.
We observe phenomena that the pseudo entropy can be parametrically large compared with the logarithm of the dimension of space.
We call these phenomena pseudo entropy amplification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study pseudo entropy for a particular linear combination of entangled
states in qubit systems, two-dimensional free conformal field theories (CFT),
and two-dimensional holographic CFT. We observe phenomena that the pseudo
entropy can be parametrically large compared with the logarithm of the
dimension of Hilbert space. We call these phenomena pseudo entropy
amplification. The pseudo entropy amplification is analogous to the
amplification of the weak value. In particular, our result suggests the
holographic CFT does not lead the amplification as long as the non-perturbative
effects are negligible. We also give a heuristic argument when such
(non-)amplification can occur.
Related papers
- Measuring entanglement entropy and its topological signature for
phononic systems [21.355338659414624]
Entanglement entropy provides insight into the collective degrees of freedom that underlie the systems' complex behaviours.
We report the experimental verification of the predictions by probing the nonlocal correlations in phononic systems.
The progress here opens a frontier where entanglement entropy serves as an important experimental tool in the study of emergent phases and phase transitions.
arXiv Detail & Related papers (2023-12-14T03:30:58Z) - Pseudo entropy and pseudo-Hermiticity in quantum field theories [0.0]
We explore the concept of pseudo R'enyi entropy within the context of quantum field theories (QFTs)
Our analysis reveals that the reality or complexity of the logarithmic term of pseudo R'enyi entropy can be explained through this pseudo-Hermitian framework.
We also observe a universal divergent term in the second pseudo R'enyi entropy within 2-dimensional CFTs.
arXiv Detail & Related papers (2023-11-02T07:35:04Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Disorder-Induced Entanglement Phase Transitions in Non-Hermitian Systems
with Skin Effects [20.88126933913389]
We study the dynamics of a many-body state of free fermions in the paradigmatic Hatano-Nelson model with open boundaries.
We find that the area-law behavior of the entanglement entropy in the pristine Hatano-Nelson model develops into a logarithmic scaling for small disorder strength.
arXiv Detail & Related papers (2023-05-21T04:34:05Z) - Local Intrinsic Dimensional Entropy [29.519376857728325]
Most entropy measures depend on the spread of the probability distribution over the sample space $mathcalX|$.
In this work, we question the role of cardinality and distribution spread in defining entropy measures for continuous spaces.
We find that the average value of the local intrinsic dimension of a distribution, denoted as ID-Entropy, can serve as a robust entropy measure for continuous spaces.
arXiv Detail & Related papers (2023-04-05T04:36:07Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Topological pseudo entropy [0.0]
We introduce a pseudo entropy extension of topological entanglement entropy called topological pseudo entropy.
We show that the pseudo entropy in a certain setup is equivalent to the interface entropy in two-dimensional conformal field theories.
We derive a universal formula for a pair of arbitrary boundary states.
arXiv Detail & Related papers (2021-07-05T05:26:17Z) - Aspects of Pseudo Entropy in Field Theories [0.0]
We numerically analyze a class of free scalar field theories and the XY spin model.
This reveals the basic properties of pseudo entropy in many-body systems.
We find that the non-positivity of the difference can be violated only if the initial and final states belong to different quantum phases.
arXiv Detail & Related papers (2021-06-06T13:25:35Z) - Pseudo Entropy in Free Quantum Field Theories [0.0]
We conjecture two novel properties of Pseudo entropy which we conjecture to be universal in field theories.
Our numerical results imply that pseudo entropy can play a role as a new quantum order parameter.
arXiv Detail & Related papers (2020-11-19T04:25:18Z) - Holographic Pseudo Entropy [0.0]
We introduce a quantity, called pseudo entropy, as a generalization of entanglement entropy via post-selection.
We study its basic properties and classifications in qubit systems.
arXiv Detail & Related papers (2020-05-28T06:32:27Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.