The Large-Scale Structure of Entanglement in Quantum Many-body Systems
- URL: http://arxiv.org/abs/2503.03833v2
- Date: Tue, 08 Apr 2025 13:20:51 GMT
- Title: The Large-Scale Structure of Entanglement in Quantum Many-body Systems
- Authors: Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming,
- Abstract summary: We show that the thermodynamic limit of a many-body system can reveal entanglement properties that are hard to detect in finite-size systems.<n>In particular, we show that every gapped phase of matter, even the trivial one, in $Dgeq 2$ dimensions contains models with the strongest possible bipartite large-scale entanglement.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the thermodynamic limit of a many-body system can reveal entanglement properties that are hard to detect in finite-size systems -- similar to how phase transitions only sharply emerge in the thermodynamic limit. The resulting operational entanglement properties are in one-to-one correspondence with abstract properties of the local observable algebras that emerge in the thermodynamic limit. These properties are insensitive to finite perturbations and hence describe the $\textit{large-scale structure of entanglement}$ of many-body systems. We formulate and discuss the emerging structures and open questions, both for gapped and gapless many-body systems. In particular, we show that every gapped phase of matter, even the trivial one, in $D\geq 2$ dimensions contains models with the strongest possible bipartite large-scale entanglement. Conversely, we conjecture the existence of topological phases of matter, where all representatives have the strongest form of entanglement.
Related papers
- Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - Entanglement signatures of a percolating quantum system [0.0]
Entanglement measures have emerged as one of the versatile probes to diagnose quantum phases and their transitions.
We show that when the underlying lattice has percolation disorder, free fermions at a finite density show interesting entanglement properties due to massively degenerate ground states.
arXiv Detail & Related papers (2024-03-22T18:00:07Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.<n>We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - Signatures of a quantum phase transition on a single-mode bosonic model [0.0]
Equilibrium phase transitions emerge from the microscopic behavior of many-body systems.
They can be defined through the non-analytic behavior of thermodynamic potentials in the thermodynamic limit.
Taking previous ideas to the extreme, we argue that such a limit can be defined even in non-extended systems.
arXiv Detail & Related papers (2023-03-22T20:14:45Z) - Entanglement entropy of higher rank topological phases [0.0]
We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
arXiv Detail & Related papers (2023-02-22T16:06:01Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Quantum Physics in Connected Worlds [0.0]
Many-body quantum systems have a small, simple unit cell and where a vanishingly small number of pairs of the constituents directly interact.
Motivated by advances in control over the pairwise interactions in many-body simulators, we determine the fate of spin systems on more general, arbitrary graphs.
Our work paves the way for the discovery and exploitation of a whole class of geometries which can host uniquely complex phases of matter.
arXiv Detail & Related papers (2022-05-16T18:18:48Z) - Topological Random Fractals [0.0]
topological random fractals exhibit a robust mobility gap, support quantized conductance and represent a well-defined thermodynamic phase of matter.
Our results establish topological random fractals as the most complex systems known to support nontrivial band topology with their distinct unique properties.
arXiv Detail & Related papers (2021-12-16T12:11:19Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.