論文の概要: Treatment Effect Estimation with Observational Network Data using
Machine Learning
- arxiv url: http://arxiv.org/abs/2206.14591v3
- Date: Mon, 4 Sep 2023 21:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 11:52:09.535692
- Title: Treatment Effect Estimation with Observational Network Data using
Machine Learning
- Title(参考訳): 機械学習を用いた観察ネットワークデータによる治療効果推定
- Authors: Corinne Emmenegger and Meta-Lina Spohn and Timon Elmer and Peter
B\"uhlmann
- Abstract要約: 治療効果推定のための因果推論法は、通常独立した単位を仮定する。
本研究では,1つの(社会的)ネットワークからの観測データによる処理の直接効果を推定・推定するための拡張逆確率(AIPW)を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference methods for treatment effect estimation usually assume
independent units. However, this assumption is often questionable because units
may interact, resulting in spillover effects between units. We develop
augmented inverse probability weighting (AIPW) for estimation and inference of
the direct effect of the treatment with observational data from a single
(social) network with spillover effects. We use plugin machine learning and
sample splitting to obtain a semiparametric treatment effect estimator that
converges at the parametric rate and asymptotically follows a Gaussian
distribution. We apply our AIPW method to the Swiss StudentLife Study data to
investigate the effect of hours spent studying on exam performance accounting
for the students' social network.
- Abstract(参考訳): 治療効果推定のための因果推論法は通常独立した単位を仮定する。
しかし、この仮定は、ユニットが相互作用し、ユニット間のこぼれを引き起こす可能性があるため、しばしば疑わしい。
本研究では,1つの(社会的)ネットワークからの観測データによる処理の直接効果を推定および推定するための拡張逆確率重み付け(AIPW)を開発した。
パラメトリックレートで収束し,漸近的にガウス分布に従う半パラメトリック処理効果推定器を得るために,プラグイン機械学習とサンプル分割を用いる。
本研究では,スイスの学生生活調査データにAIPW法を適用し,学生のソーシャルネットワークの試験成績に及ぼす学習時間の影響を検討した。
関連論文リスト
- Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
ランダム化実験における分散処理効果パラメータを推定するための新しい回帰調整法を提案する。
提案手法では,事前処理による協調処理を分散回帰フレームワークに組み込み,機械学習技術を用いて分散処理効果推定器の精度を向上させる。
論文 参考訳(メタデータ) (2024-07-22T20:28:29Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - Causal Effect Estimation from Observational and Interventional Data
Through Matrix Weighted Linear Estimators [11.384045395629123]
本研究では,観測データと介入データの混合から因果効果を推定する。
予測二乗誤差の統計的効率は推定器を組み合わせることで向上できることを示す。
論文 参考訳(メタデータ) (2023-06-09T16:16:53Z) - Matched Machine Learning: A Generalized Framework for Treatment Effect
Inference With Learned Metrics [87.05961347040237]
我々は、機械学習ブラックボックスの柔軟性とマッチングの解釈可能性を組み合わせたフレームワークであるMatched Machine Learningを紹介する。
我々のフレームワークは機械学習を用いて、一致した単位を学習し、結果を推定する最適な指標を学習する。
一致機械学習のインスタンスはブラックボックスの機械学習手法と同等に動作し、類似した問題に対する既存のマッチング手法よりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-04-03T19:32:30Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
因果効果変動オートエンコーダ(CEVAE)をトレーニングし、観察処理データから結果を予測する。
均一処理変分オートエンコーダ (UTVAE) は, 重要サンプリングを用いて均一な処理分布を訓練する。
論文 参考訳(メタデータ) (2021-11-16T17:40:57Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z) - Fisher-Schultz Lecture: Generic Machine Learning Inference on
Heterogenous Treatment Effects in Randomized Experiments, with an Application
to Immunization in India [3.3449509626538543]
ランダム化実験における異種効果の重要な特徴を推定し,推定する手法を提案する。
主な特徴は、機械学習プロキシを使用した効果の最良の線形予測器、インパクトグループによってソートされた平均効果、および最も最も最も影響の少ないユニットの平均特性である。
論文 参考訳(メタデータ) (2017-12-13T14:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。