Superresolution at the quantum limit beyond two point sources
- URL: http://arxiv.org/abs/2206.14788v1
- Date: Wed, 29 Jun 2022 17:42:53 GMT
- Title: Superresolution at the quantum limit beyond two point sources
- Authors: Hari Krovi
- Abstract summary: We use general symmetry in a constellation to construct a quantum measurement that achieves the quantum Cramer-Rao bound in estimation of parameters.
We show how this technique can be used to estimate parameters simultaneously in symmetric point-source constellations with more than two point sources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superresolution refers to the estimation of parameters of an image with an
accuracy beyond standard classical techniques such as direct detection. In
seminal work by Lu et al., a measurement to estimate the separation distance of
two point sources (with a known centroid) was shown to achieve the quantum
Cramer-Rao bound. This work made implicit use of reflection symmetry of the
sources. Here we present a framework that uses more general symmetry in a
constellation to construct a quantum measurement that achieves the quantum
Cramer-Rao bound in estimation of parameters. We show how this technique can be
used to estimate parameters simultaneously in symmetric point-source
constellations with more than two point sources. In order to use symmetry
explicitly, we make use discrete point spread functions in momentum space that
maintain this symmetry. This framework allows us to use techniques from quantum
computing such as Fourier transforms and linear optical circuits to implement
the optimal measurement. To our knowledge, this is first work that shows for
more than two point sources achievable quantum limits of estimation and modal
transformations.
Related papers
- Quantum Algorithms for Realizing Symmetric, Asymmetric, and Antisymmetric Projectors [3.481985817302898]
Knowing the symmetries of a given system or state obeys or disobeys is often useful in quantum computing.
We present a collection of quantum algorithms that realize projections onto the symmetric subspace.
We show how projectors can be combined in a systematic way to effectively measure various projections in a single quantum circuit.
arXiv Detail & Related papers (2024-07-24T18:00:07Z) - Multicritical quantum sensors driven by symmetry-breaking [0.7499722271664147]
We analytically demonstrate that symmetry-breaking can drive a quantum enhanced sensing in single- or multi parameter estimation.
We show that it is possible to obtain super-Heisenberg scaling by combining the effects of symmetry-breaking and gapless-to-gapped transition.
arXiv Detail & Related papers (2024-07-19T15:57:02Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Adaptive quantum state estimation for two optical point sources [0.0]
In classical optics, there is a well-known resolution limit, called Rayleigh's curse, in the separation of two incoherent optical sources.
We propose a method to simultaneously estimate the positions of two point sources with the highest accuracy using adaptive quantum state estimation scheme.
arXiv Detail & Related papers (2023-08-03T07:47:44Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Quantum limits to polarization measurement of classical light [3.04585143845864]
Polarization of light is one of the fundamental concepts in optics.
I calculate the quantum limit to a precision of a polarization measurement of classical coherent light.
arXiv Detail & Related papers (2021-12-10T14:45:27Z) - Symmetric distinguishability as a quantum resource [21.071072991369824]
We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources.
We study the resource theory for two different classes of free operations: $(i)$ $rmCPTP_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly (CDS) maps acting on $XA$.
arXiv Detail & Related papers (2021-02-24T19:05:02Z) - Quantum-limited Localisation and Resolution in Three Dimensions [10.824994978916815]
We determine the ultimate potential of quantum-limited imaging for improving the resolution of a far-field, diffraction-limited approximation.
Our results give the upper bounds on certain far-field imaging technology and will find wide applications from microscopy to astrometry.
arXiv Detail & Related papers (2020-12-09T14:44:56Z) - Quantum-Assisted Optical Interferometers: Instrument Requirements [37.89976990030855]
We propose that photons from two different sources could be interfered at two decoupled stations, requiring only a slow classical connection between them.
We show that this approach could allow high-precision measurements of the relative astrometry of the two sources, with a simple estimate giving angular resolution of $10 mu$as in a few hours' observation of two bright stars.
arXiv Detail & Related papers (2020-12-04T19:25:02Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.