Multicritical quantum sensors driven by symmetry-breaking
- URL: http://arxiv.org/abs/2407.14428v1
- Date: Fri, 19 Jul 2024 15:57:02 GMT
- Title: Multicritical quantum sensors driven by symmetry-breaking
- Authors: Sayan Mondal, Ayan Sahoo, Ujjwal Sen, Debraj Rakshit,
- Abstract summary: We analytically demonstrate that symmetry-breaking can drive a quantum enhanced sensing in single- or multi parameter estimation.
We show that it is possible to obtain super-Heisenberg scaling by combining the effects of symmetry-breaking and gapless-to-gapped transition.
- Score: 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum criticality has been demonstrated as a useful quantum resource for parameter estimation. This includes second-order, topological and localization transitions. In all these works reported so far, gap-to-gapless transition at criticality has been identified as the ultimate resource for achieving the quantum enhanced sensing, although there are several important concepts associated with criticality, such as long-range correlation, symmetry breaking. In this work, we analytically demonstrate that symmetry-breaking can drive a quantum enhanced sensing in single- or multiparameter estimation. We show this in the well-known Kitaev model, a lattice version of the 1D p-wave superconductor, which consists of a pairing term and an onsite potential term. The model is characterized by two critical lines and a multi-critical point at the intersection of these two lines. We show that Heisenberg scaling can be obtained in precision measurement of the superconducting coupling by preparing the system at or near the multicritical point despite the fact that parameter variation follows the critical lines, i.e., without an explicit requirement of gap-to-gapless transition. Quantum enhancement in such situations solely occurs due to a global U(1) symmetry-breaking by the pairing term. Extending our analysis in the realm of multiparameter estimation we show that it is possible to obtain super-Heisenberg scaling by combining the effects of symmetry-breaking and gapless-to-gapped transition.
Related papers
- Achieving the Multi-parameter Quantum Cramér-Rao Bound with Antiunitary Symmetry [18.64293022108985]
We propose a novel and comprehensive approach to optimize the parameters encoding strategies with the aid of antiunitary symmetry.
The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off.
arXiv Detail & Related papers (2024-11-22T13:37:43Z) - Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator [0.0]
We implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator.
We show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity.
arXiv Detail & Related papers (2024-09-30T05:43:08Z) - Collective quantum enhancement in critical quantum sensing [37.69303106863453]
We show that collective quantum advantage can be achieved with a multipartite critical quantum sensor based on a parametrically coupled Kerr resonators chain.
We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system.
We evaluate the scaling of the quantum Fisher information with respect to fundamental resources, and find that the critical chain achieves a quadratic enhancement in the number of resonators.
arXiv Detail & Related papers (2024-07-25T14:08:39Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Multiparameter quantum critical metrology [0.0]
We argue that quantum criticality may also play a positive role in reducing the incompatibility in the simultaneous estimation of multiple parameters.
The antiferromagnetic and ferromagnetic 1-D Ising chain with both transverse and longitudinal fields are analysed.
arXiv Detail & Related papers (2022-03-23T19:00:01Z) - Free-Fermionic Topological Quantum Sensors [0.0]
We analytically demonstrate that quantum enhanced sensing is possible using topological edge states near the phase boundary.
While neither symmetry-breaking nor long-range entanglement are essential, gap closing remains as the major candidate for the ultimate source of quantum enhanced sensing.
arXiv Detail & Related papers (2022-01-18T16:27:46Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.