Strong Lensing Source Reconstruction Using Continuous Neural Fields
- URL: http://arxiv.org/abs/2206.14820v1
- Date: Wed, 29 Jun 2022 18:00:01 GMT
- Title: Strong Lensing Source Reconstruction Using Continuous Neural Fields
- Authors: Siddharth Mishra-Sharma, Ge Yang
- Abstract summary: We introduce a method that uses continuous neural fields to non-parametrically reconstruct the complex morphology of a source galaxy.
We demonstrate the efficacy of our method through experiments on simulated data targeting high-resolution lensing images.
- Score: 3.604982738232833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From the nature of dark matter to the rate of expansion of our Universe,
observations of distant galaxies distorted through strong gravitational lensing
have the potential to answer some of the major open questions in astrophysics.
Modeling galaxy-galaxy strong lensing observations presents a number of
challenges as the exact configuration of both the background source and
foreground lens galaxy is unknown. A timely call, prompted by a number of
upcoming surveys anticipating high-resolution lensing images, demands methods
that can efficiently model lenses at their full complexity. In this work, we
introduce a method that uses continuous neural fields to non-parametrically
reconstruct the complex morphology of a source galaxy while simultaneously
inferring a distribution over foreground lens galaxy configurations. We
demonstrate the efficacy of our method through experiments on simulated data
targeting high-resolution lensing images similar to those anticipated in
near-future astrophysical surveys.
Related papers
- CSST Strong Lensing Preparation: a Framework for Detecting Strong Lenses in the Multi-color Imaging Survey by the China Survey Space Telescope (CSST) [25.468504540327498]
Strong gravitational lensing is a powerful tool for investigating dark matter and dark energy properties.
We have developed a framework based on a hierarchical visual Transformer with a sliding window technique to search for strong lensing systems within entire images.
Our framework achieves precision and recall rates of 0.98 and 0.90, respectively.
arXiv Detail & Related papers (2024-04-02T09:44:30Z) - Galaxy Classification: A machine learning approach for classifying
shapes using numerical data [0.0]
We present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo project.
Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.
arXiv Detail & Related papers (2023-11-30T20:47:16Z) - Spiral-Elliptical automated galaxy morphology classification from
telescope images [0.40792653193642503]
We develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images.
We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics.
arXiv Detail & Related papers (2023-10-10T22:36:52Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries.
In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology.
We propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos.
arXiv Detail & Related papers (2023-03-09T18:59:50Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Detection of Strongly Lensed Arcs in Galaxy Clusters with Transformers [11.051750815556748]
We propose a framework to detect cluster-scale strongly lensed arcs, which contains a transformer-based detection algorithm and an image simulation algorithm.
Results show that our approach could achieve 99.63 % accuracy rate, 90.32 % recall rate, 85.37 % precision rate and 0.23 % false positive rate in detection of strongly lensed arcs from simulated images.
arXiv Detail & Related papers (2022-11-11T02:33:34Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
We use a score-based model to encode the prior for the inference of undistorted images of background galaxies.
We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
arXiv Detail & Related papers (2022-11-07T19:00:42Z) - Towards solving model bias in cosmic shear forward modeling [2.967246997200238]
Weak gravitational lensing generates a slight shearing of galaxy morphologies called cosmic shear.
Modern techniques of shear estimation based on statistics of ellipticity measurements suffer from the fact that the ellipticity is not a well-defined quantity for arbitrary galaxy light profiles.
We show that a hybrid physical and deep learning Hierarchical Bayesian Model, where a generative model captures the galaxy morphology, enables us to recover an unbiased estimate of the shear on realistic galaxies.
arXiv Detail & Related papers (2022-10-28T16:23:49Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.