論文の概要: Understanding Physical Effects for Effective Tool-use
- arxiv url: http://arxiv.org/abs/2206.14998v1
- Date: Thu, 30 Jun 2022 03:13:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 15:25:14.429943
- Title: Understanding Physical Effects for Effective Tool-use
- Title(参考訳): 効果的なツール利用のための物理効果の理解
- Authors: Zeyu Zhang, Ziyuan Jiao, Weiqi Wang, Yixin Zhu, Song-Chun Zhu, Hangxin
Liu
- Abstract要約: 本稿では,最小の協力力で効果的なツール利用戦略を創出するロボット学習計画フレームワークを提案する。
FEM(Finite Element Method)をベースとしたシミュレータを用いて,観測ツール使用時の細粒度,連続的な視覚的,身体的効果を再現する。
シミュレーションでは,提案手法が2つのタスクで観測されたものとは大きく異なる,より効果的なツール利用戦略を実現できることを示す。
- 参考スコア(独自算出の注目度): 91.55810923916454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a robot learning and planning framework that produces an effective
tool-use strategy with the least joint efforts, capable of handling objects
different from training. Leveraging a Finite Element Method (FEM)-based
simulator that reproduces fine-grained, continuous visual and physical effects
given observed tool-use events, the essential physical properties contributing
to the effects are identified through the proposed Iterative Deepening Symbolic
Regression (IDSR) algorithm. We further devise an optimal control-based motion
planning scheme to integrate robot- and tool-specific kinematics and dynamics
to produce an effective trajectory that enacts the learned properties. In
simulation, we demonstrate that the proposed framework can produce more
effective tool-use strategies, drastically different from the observed ones in
two exemplar tasks.
- Abstract(参考訳): 本稿では,最小限の協力力で効果的なツール・ユース・ストラテジーを創出し,トレーニングとは異なる対象を扱えるロボット学習計画フレームワークを提案する。
有限要素法(fem)ベースのシミュレータを用いて、観測されたツール使用イベントに対して、細粒度で連続的な視覚および物理的効果を再現し、その効果に寄与する重要な物理特性を反復的深化記号回帰(idsr)アルゴリズムにより同定する。
さらに,ロボットとツール固有の運動学とダイナミクスを統合し,学習特性を具現化する効果的な軌道を生成するための最適制御に基づく運動計画手法を考案する。
シミュレーションにより,提案手法は2つの例題タスクで観察された手法と大きく異なる,より効果的なツール利用戦略を生成できることを実証する。
関連論文リスト
- Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
本研究では,様々な抽象レベルで動的かつ適応的な表現を学習し,効率と効率の最適なトレードオフを実現する方法について検討する。
具体的には、環境の動的分解能粒子表現を構築し、グラフニューラルネットワーク(GNN)を用いた統一力学モデルを学ぶ。
本手法は, 粒状オブジェクトの収集, ソート, 再分配において, 最先端の固定解像度ベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-06-29T05:51:44Z) - SoftGPT: Learn Goal-oriented Soft Object Manipulation Skills by
Generative Pre-trained Heterogeneous Graph Transformer [34.86946655775187]
家庭シーンにおけるソフトオブジェクト操作タスクは、既存のロボットスキル学習技術にとって重要な課題である。
本研究では,ソフトオブジェクト操作スキル学習モデルであるSoftGPTを提案する。
各ダウンストリームタスクに対して、ゴール指向ポリシーエージェントがトレーニングされ、その後のアクションを予測し、SoftGPTが結果を生成する。
論文 参考訳(メタデータ) (2023-06-22T05:48:22Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Exploiting Symmetry and Heuristic Demonstrations in Off-policy
Reinforcement Learning for Robotic Manipulation [1.7901837062462316]
本稿では,物理ロボット環境に存在する自然対称性を定義し,組み込むことを目的とする。
提案手法は,産業用アームの2つのポイント・ツー・ポイント・リーチタスクによって,障害物を伴わずに検証される。
提案手法と従来の非政治強化学習アルゴリズムとの比較研究は,アプリケーションにおける学習性能と潜在的価値の優位性を示している。
論文 参考訳(メタデータ) (2023-04-12T11:38:01Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
我々は,与えられたシナリオで追跡するキャラクタの動作を選択するための完全自動化手法を提案する。
キャラクタが実行するべきハイレベルなタスク目標は、比較的単純な報酬関数によって指定できる。
キャラクタの動作の低レベルスタイルは、非構造化モーションクリップのデータセットによって指定できる。
本システムでは,最先端のトラッキング技術に匹敵する高品質な動作を生成する。
論文 参考訳(メタデータ) (2021-04-05T22:43:14Z) - Emergent Hand Morphology and Control from Optimizing Robust Grasps of
Diverse Objects [63.89096733478149]
多様な物体をつかむために、効果的なハンドデザインが自然に現れるデータ駆動型アプローチを紹介します。
形態と把持スキルを共同で効率的に設計するベイズ最適化アルゴリズムを開発した。
我々は,新しい物体をつかむための堅牢で費用効率のよい手形態を発見するためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-22T17:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。