Pulse Shape Simulation and Discrimination using Machine-Learning Techniques
- URL: http://arxiv.org/abs/2206.15156v2
- Date: Wed, 15 May 2024 21:26:24 GMT
- Title: Pulse Shape Simulation and Discrimination using Machine-Learning Techniques
- Authors: Shubham Dutta, Sayan Ghosh, Satyaki Bhattacharya, Satyajit Saha,
- Abstract summary: Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy and rare-event search experiments.
We present the results of our investigations of two network based methods viz Dense Neural Network and Recurrent Neural Network, for pulse shape discrimination.
- Score: 4.841198458855317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An essential metric for the quality of a particle-identification experiment is its statistical power to discriminate between signal and background. Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy and rare-event search experiments where scintillation detectors are used. Conventional techniques exploit the difference between decay-times of the pulses from signal and background events or pulse signals caused by different types of radiation quanta to achieve good discrimination. However, such techniques are efficient only when the total light-emission is sufficient to get a proper pulse profile. This is only possible when adequate amount of energy is deposited from recoil of the electrons or the nuclei of the scintillator materials caused by the incident particle on the detector. But, rare-event search experiments like direct search for dark matter do not always satisfy these conditions. Hence, it becomes imperative to have a method that can deliver a very efficient discrimination in these scenarios. Neural network based machine-learning algorithms have been used for classification problems in many areas of physics especially in high-energy experiments and have given better results compared to conventional techniques. We present the results of our investigations of two network based methods \viz Dense Neural Network and Recurrent Neural Network, for pulse shape discrimination and compare the same with conventional methods.
Related papers
- Efficient representation learning of scintillation signal characteristics with spectrum-inspired temporal neural networks [1.124958340749622]
Nuclear radiation detectors based on scintillators are widely used in particle and high energy physics experiments, nuclear medicine imaging, industrial and environmental detection, etc.
We propose a network architecture specially tailored for scintillation signal characterization based on previous works on time series analysis.
arXiv Detail & Related papers (2024-10-09T02:44:53Z) - Experimental certification of level dynamics in single-photon emitters [0.0]
Emitters of single-photons are essential resources for emerging quantum technologies.
The most commonly applied test uses a Hanbury-Brown and Twiss (HBT) setup to determine the emitter energy level structure.
We present a complete analysis based on all normalized coincidences between detection and no-detection events recorded in the same HBT setup to certify expected properties of an emitted photonic state.
arXiv Detail & Related papers (2024-07-18T08:27:27Z) - Event-Driven Learning for Spiking Neural Networks [43.17286932151372]
Brain-inspired spiking neural networks (SNNs) have gained prominence in the field of neuromorphic computing.
It remains an open challenge how to effectively benefit from the sparse event-driven property of SNNs to minimize backpropagation learning costs.
We introduce two novel event-driven learning methods: the spike-timing-dependent event-driven (STD-ED) and membrane-potential-dependent event-driven (MPD-ED) algorithms.
arXiv Detail & Related papers (2024-03-01T04:17:59Z) - Quantum-noise-limited optical neural networks operating at a few quanta
per activation [5.494796517705931]
We show that it is possible to train optical neural networks to perform deterministic image-classification tasks with high accuracy.
We experimentally demonstrated MNIST classification with a test accuracy of 98% using an optical neural network with a hidden layer operating in the single-photon regime.
arXiv Detail & Related papers (2023-07-28T17:59:46Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
We propose a novel method based on deep learning for timing analysis of modularized detectors.
We mathematically demonstrate the existence of the optimal function desired by the method, and give a systematic algorithm for training and calibration of the model.
arXiv Detail & Related papers (2023-04-24T09:16:31Z) - Femtosecond pulse parameter estimation from photoelectron momenta using
machine learning [0.0]
convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation.
Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to invert' experimental data.
arXiv Detail & Related papers (2023-03-24T11:58:06Z) - Testing predictions of representation cost theory with CNNs [5.816527700115096]
We show that trained convolutional neural networks (CNNs) have different levels of sensitivity to signals of different frequency.
This is a consequence of the frequency distribution of natural images, which is known to have most of its power concentrated in low-to-mid frequencies.
arXiv Detail & Related papers (2022-10-03T22:35:43Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Identifying nonclassicality from experimental data using artificial
neural networks [52.77024349608834]
We train an artificial neural network to classify classical and nonclassical states from their quadrature-measurement distributions.
We show that the network is able to correctly identify classical and nonclassical features from real experimental quadrature data for different states of light.
arXiv Detail & Related papers (2021-01-18T15:12:47Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.