Experimental certification of level dynamics in single-photon emitters
- URL: http://arxiv.org/abs/2407.13273v1
- Date: Thu, 18 Jul 2024 08:27:27 GMT
- Title: Experimental certification of level dynamics in single-photon emitters
- Authors: Luk\' aš Lachman, Ilya P. Radko, Maxime Bergamin, Ulrik L. Andersen, Radim Filip,
- Abstract summary: Emitters of single-photons are essential resources for emerging quantum technologies.
The most commonly applied test uses a Hanbury-Brown and Twiss (HBT) setup to determine the emitter energy level structure.
We present a complete analysis based on all normalized coincidences between detection and no-detection events recorded in the same HBT setup to certify expected properties of an emitted photonic state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emitters of single-photons are essential resources for emerging quantum technologies and developed within different platforms including nonlinear optics, atomic and solid-state systems. The energy level structures of emission processes are critical for reaching and controlling high-quality sources. The most commonly applied test uses a Hanbury-Brown and Twiss (HBT) setup to determine the emitter energy level structure based on fitting temporal correlations of photon detection events. However, only partial information about the emission process is extracted from such detection, that might be followed by an inconclusive fitting of the data. This process predetermines our limited ability to quantify and understand the dynamics in the photon emission process that are of importance for the applications in communication, sensing and computing. In this work, we present a complete analysis based on all normalized coincidences between detection and no-detection events recorded in the same HBT setup to certify expected properties of an emitted photonic state. As a proof of concept we apply our methodology to single nitrogen-vacancy centers in diamond, in which case the certification conclusively rejects a model based on a two-level emitter that radiates a photonic states mixed with any classical noise background.
Related papers
- Deep learning-based variational autoencoder for classification of quantum and classical states of light [0.0]
We introduce a deep learning-based variational autoencoder (VAE) for classifying single photon added coherent state (SPACS)
VAE efficiently maps the photon statistics features of light to a lower dimension, enabling quasi-instantaneous classification with low average photon counts.
We envision that such a deep learning methodology will enable better classification of quantum light and light sources even in the presence of poor detection quality.
arXiv Detail & Related papers (2024-05-08T17:40:03Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Entangling remote qubits using the single-photon protocol: an in-depth
theoretical and experimental study [0.0]
In the single-photon, protocol entanglement is heralded by generation of qubit-photon entangled states and subsequent detection of a single photon behind a beam splitter.
We develop an extensive theoretical model and tailor it to our experimental setting, based on nitrogen-vacancy centers in diamond.
We find that imperfect optical excitation can lead to a detection-arm-dependent entangled state fidelity and rate.
arXiv Detail & Related papers (2022-08-15T21:56:40Z) - All-optical determination of one or two emitters using quantum
polarization with nitrogen-vacancy centers in diamond [3.3329044254969187]
We show photoluminescence intensity and quantum correlation measurements as a function of polarization for one- and two-emitter systems.
This approach provides a valuable new all-optical mechanism for the determination of one or two emitter systems useful for quantum sensing, communication, and computation tasks.
arXiv Detail & Related papers (2022-03-30T07:12:43Z) - Photon emission correlation spectroscopy as an analytical tool for
quantum defects [0.0]
This tutorial presents a standardized framework for using photon emission correlation spectroscopy to study quantum emitters.
We highlight important nuances and best practices regarding the commonly-used $g(2)(tau=0)0.5$ test for single-photon emission.
We illustrate how this experimental technique can be paired with optical dynamics simulations to formulate an electronic model for unknown quantum emitters.
arXiv Detail & Related papers (2021-11-01T20:43:22Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - High-fidelity multi-photon-entangled cluster state with solid-state
quantum emitters in photonic nanostructures [0.0]
We propose a complete architecture for deterministic generation of entangled multiphoton states.
We assess the quality of the photonic states produced from a real system by including all intrinsic experimental imperfections.
The proposed hardware constitutes a scalable and resource-efficient approach towards implementation of measurement-based quantum communication and computing.
arXiv Detail & Related papers (2020-07-18T01:10:10Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.