Learning nonparametric ordinary differential equations from noisy data
- URL: http://arxiv.org/abs/2206.15215v3
- Date: Mon, 13 Nov 2023 01:52:03 GMT
- Title: Learning nonparametric ordinary differential equations from noisy data
- Authors: Kamel Lahouel, Michael Wells, Victor Rielly, Ethan Lew, David Lovitz,
and Bruno M. Jedynak
- Abstract summary: Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot x = f(t,x) from noisy data is an emerging machine learning topic.
We use the theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique.
We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution.
- Score: 0.10555513406636088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot
x = f(t,x) from noisy data is an emerging machine learning topic. We use the
well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define
candidates for f for which the solution of the ODE exists and is unique.
Learning f consists of solving a constrained optimization problem in an RKHS.
We propose a penalty method that iteratively uses the Representer theorem and
Euler approximations to provide a numerical solution. We prove a generalization
bound for the L2 distance between x and its estimator and provide experimental
comparisons with the state-of-the-art.
Related papers
- A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework.
By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process.
The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations.
arXiv Detail & Related papers (2024-09-05T13:20:10Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions [0.31317409221921133]
Learning a nonparametric system of ordinary differential equations requires learning $d$ functions of $d$ variables.
Explicit formulations scale quadratically in $d$ unless additional knowledge about system properties, such as sparsity and symmetries, is available.
We propose a linear approach to learning using the implicit formulation provided by vector-valued Reproducing Kernel Hilbert Spaces.
arXiv Detail & Related papers (2023-06-16T21:49:36Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
We propose a transformer-based sequence-to-sequence model that recovers scalar autonomous ordinary differential equations (ODEs) in symbolic form from time-series data of a single observed solution of the ODE.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing laws of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2022-11-05T07:07:58Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Constraining Gaussian Processes to Systems of Linear Ordinary
Differential Equations [5.33024001730262]
LODE-GPs follow a system of linear homogeneous ODEs with constant coefficients.
We show the effectiveness of LODE-GPs in a number of experiments.
arXiv Detail & Related papers (2022-08-26T09:16:53Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Feature Engineering with Regularity Structures [4.082216579462797]
We investigate the use of models from the theory of regularity structures as features in machine learning tasks.
We provide a flexible definition of a model feature vector associated to a space-time signal, along with two algorithms which illustrate ways in which these features can be combined with linear regression.
We apply these algorithms in several numerical experiments designed to learn solutions to PDEs with a given forcing and boundary data.
arXiv Detail & Related papers (2021-08-12T17:53:47Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
We show a new class of solvers for ordinary differential equations (ODEs) that phrase the solution process directly in terms of Bayesian filtering.
It then becomes possible to perform approximate Bayesian inference on the latent force as well as the ODE solution in a single, linear complexity pass of an extended Kalman filter.
We demonstrate the expressiveness and performance of the algorithm by training a non-parametric SIRD model on data from the COVID-19 outbreak.
arXiv Detail & Related papers (2021-03-18T10:36:09Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.