Symbolic Recovery of Differential Equations: The Identifiability Problem
- URL: http://arxiv.org/abs/2210.08342v9
- Date: Wed, 09 Oct 2024 15:27:08 GMT
- Title: Symbolic Recovery of Differential Equations: The Identifiability Problem
- Authors: Philipp Scholl, Aras Bacho, Holger Boche, Gitta Kutyniok,
- Abstract summary: Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
- Score: 52.158782751264205
- License:
- Abstract: Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations with the use of machine learning techniques. In contrast to classical methods which assume the structure of the equation to be known and focus on the estimation of specific parameters, these algorithms aim to learn the structure and the parameters simultaneously. While the uniqueness and, therefore, the identifiability of parameters of governing equations are a well-addressed problem in the field of parameter estimation, it has not been investigated for symbolic recovery. However, this problem should be even more present in this field since the algorithms aim to cover larger spaces of governing equations. In this paper, we investigate under which conditions a solution of a differential equation does not uniquely determine the equation itself. For various classes of differential equations, we provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation. We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely. Finally, we provide extensive numerical experiments showing that our algorithms can indeed guarantee the uniqueness of the learned governing differential equation, without assuming any knowledge about the analytic form of function, thereby ensuring the reliability of the learned equation.
Related papers
- Estimating unknown parameters in differential equations with a reinforcement learning based PSO method [2.9808905403445145]
This paper reformulates the parameter estimation problem of differential equations as an optimization problem by introducing the concept of particles.
Building on reinforcement learning-based particle swarm optimization (RLLPSO), this paper proposes a novel method, DERLPSO, for estimating unknown parameters of differential equations.
The experimental results demonstrate that our DERLPSO consistently outperforms other methods in terms of performance, achieving an average Mean Square Error of 1.13e-05.
arXiv Detail & Related papers (2024-11-13T14:40:51Z) - Towards true discovery of the differential equations [57.089645396998506]
Differential equation discovery is a machine learning subfield used to develop interpretable models.
This paper explores the prerequisites and tools for independent equation discovery without expert input.
arXiv Detail & Related papers (2023-08-09T12:03:12Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions.
The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
arXiv Detail & Related papers (2023-06-29T15:37:19Z) - Physics-informed Neural Network: The Effect of Reparameterization in
Solving Differential Equations [0.0]
Complicated physics mostly involves difficult differential equations, which are hard to solve analytically.
In recent years, physics-informed neural networks have been shown to perform very well in solving systems with various differential equations.
arXiv Detail & Related papers (2023-01-28T07:53:26Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
We propose a transformer-based sequence-to-sequence model that recovers scalar autonomous ordinary differential equations (ODEs) in symbolic form from time-series data of a single observed solution of the ODE.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing laws of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2022-11-05T07:07:58Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
The article presents a method that uses an optimization algorithm to obtain a solution using the parameterized approximation.
It allows solving the wide class of equations in an automated manner without the algorithm's parameters change.
arXiv Detail & Related papers (2022-05-11T10:06:47Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
We propose a new class of physics-informed neural networks, called physics-informed Variational Autoencoder (PI-VAE)
PI-VAE consists of a variational autoencoder (VAE), which generates samples of system variables and parameters.
The satisfactory accuracy and efficiency of the proposed method are numerically demonstrated in comparison with physics-informed generative adversarial network (PI-WGAN)
arXiv Detail & Related papers (2022-03-21T21:51:19Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
We describe a neural-based method for generating exact or approximate solutions to differential equations.
Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly.
arXiv Detail & Related papers (2020-11-12T22:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.