Implicit U-Net for volumetric medical image segmentation
- URL: http://arxiv.org/abs/2206.15217v1
- Date: Thu, 30 Jun 2022 12:00:40 GMT
- Title: Implicit U-Net for volumetric medical image segmentation
- Authors: Sergio Naval Marimont and Giacomo Tarroni
- Abstract summary: Implicit U-Net adapts the efficient Implicit Representation paradigm to supervised image segmentation tasks.
Our implicit U-Net has 40% less parameters than the equivalent U-Net.
When comparing to an equivalent fully convolutional U-Net, Implicit U-Net reduces by approximately 30% inference and training time.
- Score: 0.6294759639481189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: U-Net has been the go-to architecture for medical image segmentation tasks,
however computational challenges arise when extending the U-Net architecture to
3D images. We propose the Implicit U-Net architecture that adapts the efficient
Implicit Representation paradigm to supervised image segmentation tasks. By
combining a convolutional feature extractor with an implicit localization
network, our implicit U-Net has 40% less parameters than the equivalent U-Net.
Moreover, we propose training and inference procedures to capitalize sparse
predictions. When comparing to an equivalent fully convolutional U-Net,
Implicit U-Net reduces by approximately 30% inference and training time as well
as training memory footprint while achieving comparable results in our
experiments with two different abdominal CT scan datasets.
Related papers
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
We present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID)
Our NID assembles a group of coordinate-based Impworks which are tuned to span the desired function space.
Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data.
arXiv Detail & Related papers (2022-07-08T05:07:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
"Traditional" encoder-decoder based approaches perform poorly in detecting smaller structures and are unable to segment boundary regions precisely.
We propose KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features.
The proposed method achieves a better performance as compared to all the recent methods with an additional benefit of fewer parameters and faster convergence.
arXiv Detail & Related papers (2020-10-04T19:23:33Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed
Images [11.047174552053626]
MACU-Net is a multi-scale skip connected and asymmetric-convolution-based U-Net for fine-resolution remotely sensed images.
Our design has the following advantages: (1) The multi-scale skip connections combine and realign semantic features contained in both low-level and high-level feature maps; (2) the asymmetric convolution block strengthens the feature representation and feature extraction capability of a standard convolution layer.
Experiments conducted on two remotely sensed datasets demonstrate that the proposed MACU-Net transcends the U-Net, U-NetPPL, U-Net 3+, amongst other benchmark approaches.
arXiv Detail & Related papers (2020-07-26T08:56:47Z) - U-Net Based Architecture for an Improved Multiresolution Segmentation in
Medical Images [0.0]
We have proposed a fully convolutional neural network for image segmentation in a multi-resolution framework.
In the proposed architecture (mrU-Net), the input image and its down-sampled versions were used as the network inputs.
We trained and tested the network on four different medical datasets.
arXiv Detail & Related papers (2020-07-16T10:19:01Z) - DoubleU-Net: A Deep Convolutional Neural Network for Medical Image
Segmentation [1.6416058750198184]
DoubleU-Net is a combination of two U-Net architectures stacked on top of each other.
We have evaluated DoubleU-Net using four medical segmentation datasets.
arXiv Detail & Related papers (2020-06-08T18:38:24Z) - Medical Image Segmentation Using a U-Net type of Architecture [0.0]
We argue that the architecture of U-Net, when combined with a supervised training strategy at the bottleneck layer, can produce comparable results with the original U-Net architecture.
We introduce a fully supervised FC layers based pixel-wise loss at the bottleneck of the encoder branch of U-Net.
The two layer based FC sub-net will train the bottleneck representation to contain more semantic information, which will be used by the decoder layers to predict the final segmentation map.
arXiv Detail & Related papers (2020-05-11T16:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.