Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
- URL: http://arxiv.org/abs/2206.15238v2
- Date: Sat, 16 Mar 2024 17:08:42 GMT
- Title: Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function
- Authors: Per Kristian Lehre,
- Abstract summary: Co-evolutionary algorithms have a wide range of applications, such as in hardware design, evolution of strategies for board games, and patching software bugs.
It is an open challenge to develop a theory that can predict when co-evolutionary algorithms find solutions efficiently and reliable.
This paper provides a first step in developing runtime analysis for population-based competitive co-evolutionary algorithms.
- Score: 1.3053649021965603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Co-evolutionary algorithms have a wide range of applications, such as in hardware design, evolution of strategies for board games, and patching software bugs. However, these algorithms are poorly understood and applications are often limited by pathological behaviour, such as loss of gradient, relative over-generalisation, and mediocre objective stasis. It is an open challenge to develop a theory that can predict when co-evolutionary algorithms find solutions efficiently and reliable. This paper provides a first step in developing runtime analysis for population-based competitive co-evolutionary algorithms. We provide a mathematical framework for describing and reasoning about the performance of co-evolutionary processes. An example application of the framework shows a scenario where a simple co-evolutionary algorithm obtains a solution in polynomial expected time. Finally, we describe settings where the co-evolutionary algorithm needs exponential time with overwhelmingly high probability to obtain a solution.
Related papers
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Evolution is Still Good: Theoretical Analysis of Evolutionary Algorithms
on General Cover Problems [16.98107289469868]
Some approximation mechanism seems to be inherently embedded in many evolutionary algorithms.
We identify such a relation by proposing a unified analysis framework for a generalized simple multi-objective evolutionary algorithm.
arXiv Detail & Related papers (2022-10-03T01:25:53Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Epistocracy Algorithm: A Novel Hyper-heuristic Optimization Strategy for
Solving Complex Optimization Problems [1.471992435706872]
This paper proposes a novel evolutionary algorithm called Epistocracy which incorporates human socio-political behavior and intelligence to solve complex optimization problems.
The inspiration of the Epistocracy algorithm originates from a political regime where educated people have more voting power than the uneducated or less educated.
Experimental results show that the Epistocracy algorithm outperforms the tested state-of-the-art evolutionary and swarm intelligence algorithms in terms of performance, precision, and robustness.
arXiv Detail & Related papers (2021-01-30T19:07:09Z) - A Survey On (Stochastic Fractal Search) Algorithm [0.0]
This paper presents a metaheuristic algorithm called Fractal Search, inspired by the natural phenomenon of growth based on a mathematical concept called the fractal.
This paper also focuses on the steps and some example applications of engineering design optimisation problems commonly used in the literature being applied to the proposed algorithm.
arXiv Detail & Related papers (2021-01-25T22:44:04Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
This paper characterizes and discusses devolutionary genetic algorithms and evaluates their performances in solving the minimum labeling Steiner tree (MLST) problem.
We define devolutionary algorithms as the process of reaching a feasible solution by devolving a population of super-optimal unfeasible solutions over time.
We show how classical evolutionary concepts, such as crossing, mutation and fitness can be adapted to aim at reaching an optimal or close-to-optimal solution.
arXiv Detail & Related papers (2020-04-18T13:27:28Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.