論文の概要: Machine learning for automated quality control in injection moulding
manufacturing
- arxiv url: http://arxiv.org/abs/2206.15285v1
- Date: Thu, 30 Jun 2022 13:44:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 14:37:37.609232
- Title: Machine learning for automated quality control in injection moulding
manufacturing
- Title(参考訳): 射出成形における自動品質制御のための機械学習
- Authors: Steven Michiels, C\'edric De Schryver, Lynn Houthuys, Frederik
Vogeler, Frederik Desplentere
- Abstract要約: 機械学習(ML)は射出成形における品質制御(QC)を改善し、自動化することができる。
本研究では, 模擬データを用いて, 射出成形容器の製品品質予測モデルを構築した。
テストセットの精度、特異性、感度はそれぞれ99.4%$、99.7%$、94.7%$である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning (ML) may improve and automate quality control (QC) in
injection moulding manufacturing. As the labelling of extensive, real-world
process data is costly, however, the use of simulated process data may offer a
first step towards a successful implementation. In this study, simulated data
was used to develop a predictive model for the product quality of an injection
moulded sorting container. The achieved accuracy, specificity and sensitivity
on the test set was $99.4\%$, $99.7\%$ and $94.7\%$, respectively. This study
thus shows the potential of ML towards automated QC in injection moulding and
encourages the extension to ML models trained on real-world data.
- Abstract(参考訳): 機械学習(ML)は射出成形における品質制御(QC)を改善し、自動化することができる。
しかし、広範で現実世界のプロセスデータのラベル付けはコストがかかるため、シミュレートされたプロセスデータの使用は、成功への第一歩となるかもしれない。
本研究では, 模擬データを用いて, 射出成形容器の製品品質予測モデルを構築した。
テストセットの精度、特異性、感度はそれぞれ99.4\%$、99.7\%$、94.7\%$であった。
そこで本研究では,射出成形における自動QCに対するMLの可能性を示し,実世界のデータに基づいて訓練されたMLモデルの拡張を促す。
関連論文リスト
- Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies [0.0]
本研究では,QeMFiベンチマークを用いた鉛直励起エネルギー予測におけるモデル効率と精度に対する$gamma$の修正の影響について検討した。
MFMLの新たな誤差距離、誤差輪郭は、各忠実度からのモデル誤差寄与の包括的ビューを提供するために提案される。
実験結果から, 対象忠実度が低い場合, 目標忠実度において2つのトレーニングサンプルのみを用いて, モデル精度を向上できることが示唆された。
論文 参考訳(メタデータ) (2024-10-15T08:35:00Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Machine Learning Force Fields with Data Cost Aware Training [94.78998399180519]
分子動力学(MD)シミュレーションを加速するために機械学習力場(MLFF)が提案されている。
最もデータ効率のよいMLFFであっても、化学精度に達するには数百フレームの力とエネルギーのラベルが必要になる。
我々は、安価な不正確なデータと高価な正確なデータの組み合わせを利用して、MLFFのデータコストを下げる多段階計算フレームワークASTEROIDを提案する。
論文 参考訳(メタデータ) (2023-06-05T04:34:54Z) - Accelerated and Inexpensive Machine Learning for Manufacturing Processes
with Incomplete Mechanistic Knowledge [0.0]
本稿では,この問題に対処するトランスファーラーニングに基づくアプローチを提案する。
MLモデルは、物理ベースのプロセスモデル(ソース)から大量の計算コストのかかるデータに基づいて訓練され、その後、より安価な実験データ(ターゲット)に基づいて微調整される。
情報源の極めて機能的かつ定量的な不正確さにもかかわらず、我々の手法はモデル開発コストを何年も削減し、実験コストを56~76%削減し、計算コストを桁違いに削減し、予測誤差を16~24%削減する。
論文 参考訳(メタデータ) (2023-04-29T10:54:57Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Surrogate Modelling for Injection Molding Processes using Machine
Learning [0.23090185577016442]
射出成形は、複雑なプラスチックオブジェクトをモデル化するための最も一般的な製造方法の1つである。
モルドフローシミュレーションプロジェクトからのデータの抽出を含むデータ処理パイプラインのベースラインを提案する。
我々は,時間と偏向分布予測のための機械学習モデルを評価し,MSEおよびRMSEメトリクスのベースライン値を提供する。
論文 参考訳(メタデータ) (2021-07-30T12:13:52Z) - Detecting Faults during Automatic Screwdriving: A Dataset and Use Case
of Anomaly Detection for Automatic Screwdriving [80.6725125503521]
障害検出に機械学習(ML)を使用したデータ駆動型アプローチが最近注目されている。
本稿では,自動スクリュー運転時の故障検出にMLモデルを用いた場合について述べる。
論文 参考訳(メタデータ) (2021-07-05T11:46:00Z) - Towards the Automation of a Chemical Sulphonation Process with Machine
Learning [0.0]
本稿では,化学吸音過程における機械学習手法の適用結果について述べる。
プロセスパラメータからのデータを用いてランダムフォレスト、ニューラルネットワーク、線形回帰などの異なるモデルのトレーニングを行った。
実験の結果,これらの製品の品質値を精度良く予測することが可能であり,時間短縮の可能性があることが判明した。
論文 参考訳(メタデータ) (2020-09-25T10:56:41Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。