論文の概要: Automatically Balancing Model Accuracy and Complexity using Solution and
Fitness Evolution (SAFE)
- arxiv url: http://arxiv.org/abs/2206.15409v1
- Date: Thu, 30 Jun 2022 16:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 14:11:00.730440
- Title: Automatically Balancing Model Accuracy and Complexity using Solution and
Fitness Evolution (SAFE)
- Title(参考訳): ソリューションとフィットネスの進化(safe)によるモデル精度と複雑性の自動バランス
- Authors: Moshe Sipper, Jason H. Moore, Ryan J. Urbanowicz
- Abstract要約: 提案した共進化アルゴリズムSAFE(Solution and Fitness Evolution)を用いて,複数の目的を動的に調整できるかどうかを検討する。
GAMETESツールによって生成された複雑なシミュレートされた遺伝的データセットよりも、標準的な進化的アルゴリズムと比較して、SAFEは性能損失のない精度と複雑さを自動調整できることがわかった。
- 参考スコア(独自算出の注目度): 4.149117182410553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When seeking a predictive model in biomedical data, one often has more than a
single objective in mind, e.g., attaining both high accuracy and low complexity
(to promote interpretability). We investigate herein whether multiple
objectives can be dynamically tuned by our recently proposed coevolutionary
algorithm, SAFE (Solution And Fitness Evolution). We find that SAFE is able to
automatically tune accuracy and complexity with no performance loss, as
compared with a standard evolutionary algorithm, over complex simulated
genetics datasets produced by the GAMETES tool.
- Abstract(参考訳): バイオメディカルデータにおいて予測モデルを求めるとき、例えば高い精度と低い複雑さ(解釈可能性を促進するために)の両立を念頭に置いていることが多い。
本稿では、最近提案した共進化アルゴリズムSAFE(Solution And Fitness Evolution)を用いて、複数の目的を動的に調整できるかどうかを検討する。
通常の進化アルゴリズムと比較して,gametesツールが生成する複雑なシミュレート遺伝的データセットよりも,safeはパフォーマンス損失を伴わずに,精度と複雑性を自動的にチューニングできることが分かっています。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - Methods to Estimate Cryptic Sequence Complexity [0.0]
本稿では,デジタルゲノム内の暗号適応部位を定量化するために,ノックアウトに基づく3つのアッセイ手法を提案する。
本研究では, サイト適合性を考慮した簡易ゲノムモデルを用いて, これらの手法の初期試験を行った。
論文 参考訳(メタデータ) (2024-04-16T19:04:03Z) - Fast Genetic Algorithm for feature selection -- A qualitative approximation approach [5.279268784803583]
本稿では,遺伝的アルゴリズム(GA)を特徴選択に用いることによって生じる計算問題に対処するための,2段階の代理支援進化的アプローチを提案する。
我々はCHCQXがより高速に収束し、特に100K以上のインスタンスを持つ大規模データセットにおいて、非常に高い精度でサブセットソリューションを特徴付けることを示した。
論文 参考訳(メタデータ) (2024-04-05T10:15:24Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
非剛体形状の正確なスパース対応を生成するための新しい混合整数プログラミング(MIP)法を提案する。
いくつかの挑戦的な3Dデータセットに対して,スパースな非剛性マッチングの最先端結果を示す。
論文 参考訳(メタデータ) (2023-08-16T14:25:30Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Complexity Measures for Multi-objective Symbolic Regression [2.4087148947930634]
多目的的シンボリック回帰は、学習したモデルの精度が最大化される一方で、その複雑さが自動的に適応されるという利点がある。
NSGA-IIを用いて多目的最適化を行う場合, シンボリック回帰においてどの複雑性尺度が最適に使用されるかを検討する。
論文 参考訳(メタデータ) (2021-09-01T08:22:41Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Efficient Characterization of Dynamic Response Variation Using
Multi-Fidelity Data Fusion through Composite Neural Network [9.446974144044733]
構造力学解析における多レベル応答予測の機会を利用する。
得られた多レベル異種データセットを完全に活用できる複合ニューラルネットワーク融合手法を定式化する。
論文 参考訳(メタデータ) (2020-05-07T02:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。