Turbo: Opportunistic Enhancement for Edge Video Analytics
- URL: http://arxiv.org/abs/2207.00172v1
- Date: Wed, 29 Jun 2022 12:13:30 GMT
- Title: Turbo: Opportunistic Enhancement for Edge Video Analytics
- Authors: Yan Lu, Shiqi Jiang, Ting Cao, Yuanchao Shu
- Abstract summary: We study the problem of opportunistic data enhancement using the non-deterministic and fragmented idle GPU resources.
We propose a task-specific discrimination and enhancement module and a model-aware adversarial training mechanism.
Our system boosts object detection accuracy by $7.3-11.3%$ without incurring any latency costs.
- Score: 15.528497833853146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge computing is being widely used for video analytics. To alleviate the
inherent tension between accuracy and cost, various video analytics pipelines
have been proposed to optimize the usage of GPU on edge nodes. Nonetheless, we
find that GPU compute resources provisioned for edge nodes are commonly
under-utilized due to video content variations, subsampling and filtering at
different places of a pipeline. As opposed to model and pipeline optimization,
in this work, we study the problem of opportunistic data enhancement using the
non-deterministic and fragmented idle GPU resources. In specific, we propose a
task-specific discrimination and enhancement module and a model-aware
adversarial training mechanism, providing a way to identify and transform
low-quality images that are specific to a video pipeline in an accurate and
efficient manner. A multi-exit model structure and a resource-aware scheduler
is further developed to make online enhancement decisions and fine-grained
inference execution under latency and GPU resource constraints. Experiments
across multiple video analytics pipelines and datasets reveal that by
judiciously allocating a small amount of idle resources on frames that tend to
yield greater marginal benefits from enhancement, our system boosts DNN object
detection accuracy by $7.3-11.3\%$ without incurring any latency costs.
Related papers
- HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions [59.71751978599567]
This paper presents a novel annotation pipeline that uses pre-extracted features and dimensionality reduction to accelerate the temporal video annotation process.
We demonstrate significant improvements in annotation effort compared to traditional linear methods, achieving more than a 10x reduction in clicks required for annotating over 12 hours of video.
arXiv Detail & Related papers (2024-09-16T18:15:38Z) - Mondrian: On-Device High-Performance Video Analytics with Compressive
Packed Inference [7.624476059109304]
Mondrian is an edge system that enables high-performance object detection on high-resolution video streams.
We devise a novel Compressive Packed Inference to minimize per-pixel processing costs.
arXiv Detail & Related papers (2024-03-12T12:35:12Z) - Learn to Compress (LtC): Efficient Learning-based Streaming Video
Analytics [3.2872586139884623]
LtC is a collaborative framework between the video source and the analytics server that efficiently learns to reduce the video streams within an analytics pipeline.
LtC is able to use 28-35% less bandwidth and has up to 45% shorter response delay compared to recently published state of the art streaming frameworks.
arXiv Detail & Related papers (2023-07-22T21:36:03Z) - Communication-Efficient Graph Neural Networks with Probabilistic
Neighborhood Expansion Analysis and Caching [59.8522166385372]
Training and inference with graph neural networks (GNNs) on massive graphs has been actively studied since the inception of GNNs.
This paper is concerned with minibatch training and inference with GNNs that employ node-wise sampling in distributed settings.
We present SALIENT++, which extends the prior state-of-the-art SALIENT system to work with partitioned feature data.
arXiv Detail & Related papers (2023-05-04T21:04:01Z) - Task-Oriented Communication for Edge Video Analytics [11.03999024164301]
This paper proposes a task-oriented communication framework for edge video analytics.
Multiple devices collect visual sensory data and transmit the informative features to an edge server for processing.
We show that the proposed framework effectively encodes task-relevant information of video data and achieves a better rate-performance tradeoff than existing methods.
arXiv Detail & Related papers (2022-11-25T12:09:12Z) - Efficient Heterogeneous Video Segmentation at the Edge [2.4378845585726903]
We introduce an efficient video segmentation system for resource-limited edge devices leveraging heterogeneous compute.
Specifically, we design network models by searching across multiple dimensions of specifications for the neural architectures.
We analyze and optimize the heterogeneous data flows in our systems across the CPU, the GPU and the NPU.
arXiv Detail & Related papers (2022-08-24T17:01:09Z) - GPU-accelerated SIFT-aided source identification of stabilized videos [63.084540168532065]
We exploit the parallelization capabilities of Graphics Processing Units (GPUs) in the framework of stabilised frames inversion.
We propose to exploit SIFT features.
to estimate the camera momentum and %to identify less stabilized temporal segments.
Experiments confirm the effectiveness of the proposed approach in reducing the required computational time and improving the source identification accuracy.
arXiv Detail & Related papers (2022-07-29T07:01:31Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - VID-WIN: Fast Video Event Matching with Query-Aware Windowing at the
Edge for the Internet of Multimedia Things [3.222802562733787]
VID-WIN is an adaptive 2-stage allied windowing approach to accelerate video event analytics in an edge-cloud paradigm.
VID-WIN exploits the video content and input knobs to accelerate the video inference process across nodes.
arXiv Detail & Related papers (2021-04-27T10:08:40Z) - Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO [46.20949184826173]
This work focuses on the applicability of efficient low-level, GPU hardware-specific instructions to improve on existing computer vision algorithms.
Especially non-maxima suppression and the subsequent feature selection are prominent contributors to the overall image processing latency.
arXiv Detail & Related papers (2020-03-30T14:16:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.